Answer :

Para encontrar el valor de [tex]\(\theta\)[/tex] que satisface la ecuación [tex]\(\operatorname{tg}(\sec 20^\circ) \cdot \operatorname{ctg}(\csc \theta) = 1\)[/tex], debemos desglosar y resolver paso a paso.

### Paso 1: Simplificación de la expresión
Primero, recordemos las definiciones de las funciones trigonométricas involucradas:
- [tex]\(\sec x = \frac{1}{\cos x}\)[/tex]
- [tex]\(\csc x = \frac{1}{\sin x}\)[/tex]
- [tex]\(\operatorname{tg} x = \tan x\)[/tex]
- [tex]\(\operatorname{ctg} x = \cot x = \frac{1}{\tan x}\)[/tex]

### Paso 2: Evaluar [tex]\(\operatorname{tg}(\sec 20^\circ)\)[/tex]
- [tex]\(\sec 20^\circ = \frac{1}{\cos 20^\circ}\)[/tex]
- Entonces, [tex]\(\operatorname{tg}(\sec 20^\circ) = \tan\left(\frac{1}{\cos 20^\circ}\right)\)[/tex]

### Paso 3: Evaluar [tex]\(\operatorname{ctg}(\csc \theta)\)[/tex]
- [tex]\(\csc \theta = \frac{1}{\sin \theta}\)[/tex]
- Entonces, [tex]\(\operatorname{ctg}(\csc \theta) = \cot\left(\frac{1}{\sin \theta}\right) = \frac{1}{\tan\left(\frac{1}{\sin \theta}\right)}\)[/tex]

### Paso 4: Establecer la igualdad
Dado que [tex]\(\operatorname{tg}(\sec 20^\circ) \cdot \operatorname{ctg}(\csc \theta) = 1\)[/tex]:
[tex]\[ \tan\left(\frac{1}{\cos 20^\circ}\right) \cdot \frac{1}{\tan\left(\frac{1}{\sin \theta}\right)} = 1 \][/tex]
Esto implica que:
[tex]\[ \tan\left(\frac{1}{\cos 20^\circ}\right) = \tan\left(\frac{1}{\sin \theta}\right) \][/tex]

### Paso 5: Igualar argumentos de la tangente
Para que [tex]\( \tan(a) = \tan(b) \)[/tex], se debe cumplir que:
[tex]\[ \frac{1}{\cos 20^\circ} = \frac{1}{\sin \theta} \][/tex]

### Paso 6: Resolver para [tex]\(\theta\)[/tex]
Igualando las fracciones:
[tex]\[ \frac{1}{\cos 20^\circ} = \frac{1}{\sin \theta} \implies \cos 20^\circ = \sin \theta \][/tex]

Sabemos que [tex]\(\cos x = \sin (90^\circ - x)\)[/tex], por lo tanto:
[tex]\[ \cos 20^\circ = \sin (90^\circ - 20^\circ) \][/tex]
Entonces:
[tex]\[ \theta = 90^\circ - 20^\circ = 70^\circ \][/tex]

### Solución Final
Por lo tanto, el valor de [tex]\(\theta\)[/tex] que satisface la ecuación original es [tex]\(\boxed{70^\circ}\)[/tex].