What is the domain and range of the relation [tex]\([(1, -8), (-7, 8), (-3, 7), (-3, -5)]\)[/tex]?

Select one:

A. Domain [tex]\((-3, -7, 1)\)[/tex]; Range [tex]\((7, 8, -8, -5)\)[/tex]

B. Domain [tex]\((7, 8, -8, -5)\)[/tex]; Range [tex]\((-3, -7, 1)\)[/tex]

C. Domain [tex]\((-3, -7, 1, -13)\)[/tex]; Range [tex]\((7, 8, -8, -5)\)[/tex]

D. Domain [tex]\((-3, -7, 1)\)[/tex]; Range [tex]\((7, 8, -8, -5)\)[/tex]



Answer :

To determine the domain and range of the relation [tex]\([(1, -8), (-7, 8), (-3, 7), (-3, -5)]\)[/tex], we need to follow these steps:

### Step 1: Identify the Domain
The domain consists of all the unique [tex]\(x\)[/tex]-values (the first elements) from each tuple in the relation. Let's extract them:

[tex]\[ (1, -8), (-7, 8), (-3, 7), (-3, -5) \][/tex]

From these pairs, the [tex]\(x\)[/tex]-values are: [tex]\(1, -7, -3, -3\)[/tex].

### Step 2: Remove Duplicates in the Domain
To find the unique [tex]\(x\)[/tex]-values, we remove any duplicates:

[tex]\[ 1, -7, -3 \][/tex]

Therefore, the domain is [tex]\([-3, -7, 1]\)[/tex].

### Step 3: Identify the Range
The range consists of all the unique [tex]\(y\)[/tex]-values (the second elements) from each tuple in the relation. Let's extract them:

[tex]\[ (1, -8), (-7, 8), (-3, 7), (-3, -5) \][/tex]

From these pairs, the [tex]\(y\)[/tex]-values are: [tex]\(-8, 8, 7, -5\)[/tex].

### Step 4: Remove Duplicates in the Range
Since there are no duplicates in the [tex]\(y\)[/tex]-values, we simply list them as they are:

[tex]\[ -8, 8, 7, -5 \][/tex]

Therefore, the range is [tex]\([-8, 8, 7, -5]\)[/tex].

The correct answer is:

D. Domain [tex]\((-3, -7, 1)\)[/tex]; Range [tex]\((7, 8, -8, -5)\)[/tex]