Let's break down the given expression [tex]\(\left(5^0\right)\left(4^2\right)\left(4^2\right)\)[/tex] step by step.
1. First, evaluate [tex]\(5^0\)[/tex]:
Any number raised to the power of 0 is equal to 1. Thus:
[tex]\[
5^0 = 1
\][/tex]
So, the first part of our expression is 1.
2. Next, evaluate [tex]\(4^2\)[/tex]:
[tex]\[
4^2 = 4 \times 4 = 16
\][/tex]
Therefore, both occurrences of [tex]\(4^2\)[/tex] in our expression equal 16.
3. Now, multiply the results together:
With the evaluations done:
[tex]\[
(5^0) \cdot (4^2) \cdot (4^2) = 1 \cdot 16 \cdot 16
\][/tex]
4. Simplify the multiplication:
First, multiply 1 by 16:
[tex]\[
1 \times 16 = 16
\][/tex]
Then, multiply the result by 16 again:
[tex]\[
16 \times 16 = 256
\][/tex]
Therefore, the value of the given expression [tex]\(\left(5^0\right)\left(4^2\right)\left(4^2\right)\)[/tex] is:
[tex]\[
256
\][/tex]