ASCII is a character-encoding scheme that uses 7 bits to represent each character. The decimal (base 10) values 65 through 90 represent the capital letters A through [tex]$Z$[/tex], as shown in the table below.

\begin{tabular}{|c|c|}
\hline
Decimal & ASCII Character \\
\hline
65 & A \\
\hline
66 & B \\
\hline
67 & C \\
\hline
68 & D \\
\hline
69 & E \\
\hline
70 & F \\
\hline
71 & G \\
\hline
72 & H \\
\hline
73 & I \\
\hline
74 & J \\
\hline
75 & K \\
\hline
76 & L \\
\hline
77 & M \\
\hline
\end{tabular}

What ASCII character is represented by the binary (base 2) number 1001010?



Answer :

To determine which ASCII character is represented by the binary number [tex]\( 1001010 \)[/tex], follow these steps:

1. Understand the binary number system: A binary number is composed of two symbols, 0 and 1, and each position in a binary number represents a power of 2, starting from [tex]\( 2^0 \)[/tex] on the far right.

Let's first write down the binary number [tex]\( 1001010 \)[/tex]:
[tex]\[ 1001010 \][/tex]

2. Convert the binary number to decimal: To convert binary [tex]\( 1001010 \)[/tex] to its decimal equivalent, calculate the value for each bit that is set to 1. The binary number [tex]\( 1001010 \)[/tex] represents:
[tex]\[ 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \][/tex]

Let's compute these values separately and then sum them:
[tex]\[ 1 \cdot 64 + 0 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 0 \cdot 1 \][/tex]

Breaking it down:
[tex]\[ 64 + 0 + 0 + 8 + 0 + 2 + 0 = 74 \][/tex]

Therefore, the decimal equivalent of the binary number [tex]\( 1001010 \)[/tex] is [tex]\( 74 \)[/tex].

3. Determine the corresponding ASCII character: Consult the provided ASCII table to find the character that corresponds to the decimal value [tex]\( 74 \)[/tex].

According to the table:
[tex]\[ 74 \quad \rightarrow \quad J \][/tex]

Therefore, the binary number [tex]\( 1001010 \)[/tex] represents the ASCII character [tex]\( J \)[/tex].