Rewrite the expression as a product of identical factors to simplify [tex]$125^{\frac{2}{3}}$[/tex]. Submit your answer in simplified form.

[tex]\boxed{}[/tex]



Answer :

To simplify the expression [tex]\(125^{\frac{2}{3}}\)[/tex], we can follow these steps:

1. Express 125 as a power of a smaller number:
[tex]\(125\)[/tex] can be written as [tex]\(5^3\)[/tex] because [tex]\(125 = 5 \times 5 \times 5\)[/tex].

2. Rewrite the given expression:
Substitute [tex]\(125\)[/tex] with [tex]\(5^3\)[/tex]:
[tex]\[ 125^{\frac{2}{3}} = (5^3)^{\frac{2}{3}} \][/tex]

3. Use the properties of exponents:
Recall that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
Apply this property:
[tex]\[ (5^3)^{\frac{2}{3}} = 5^{3 \cdot \frac{2}{3}} \][/tex]

4. Simplify the exponent:
Multiply the exponents:
[tex]\[ 5^{3 \cdot \frac{2}{3}} = 5^2 \][/tex]

5. Calculate [tex]\(5^2\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]

Therefore, the simplified form of the expression [tex]\(125^{\frac{2}{3}}\)[/tex] is:
[tex]\[ \boxed{25} \][/tex]