How can you rewrite [tex]$9^{\frac{1}{3}}$[/tex] using a root?

[tex]\square[/tex]

---

Note: Ensure the answer box is provided for student input.



Answer :

Sure! Here is how you can rewrite [tex]\( 9^{\frac{1}{3}} \)[/tex] using a root:

1. Understand the Exponent: The expression [tex]\( 9^{\frac{1}{3}} \)[/tex] indicates taking the cube root of 9. When the exponent is a fraction [tex]\( \frac{1}{n} \)[/tex], it corresponds to the [tex]\( n \)[/tex]th root of the base number. In this case, [tex]\( \frac{1}{3} \)[/tex] tells us we are looking for the cube root.

2. Rewrite Using Root Notation: The expression [tex]\( 9^{\frac{1}{3}} \)[/tex] can be rewritten using the root symbol (∛). Specifically, the cube root of 9 can be written as:
[tex]\[ 9^{\frac{1}{3}} = \sqrt[3]{9} \][/tex]

So, [tex]\( 9^{\frac{1}{3}} \)[/tex] can be expressed as [tex]\( \sqrt[3]{9} \)[/tex], which can also be denoted using the cube root symbol [tex]\( ∛9 \)[/tex].

Thus, the answer is:
[tex]\[ ∛9 \][/tex]