Order of Operations: Add, Subtract, Multiply, Divide, Parentheses, and Exponents

Evaluate each of the following:

[tex]\[
\begin{array}{c|c}
(8-6)^2-3=\square & 9 \cdot 7^2+2= \square \\
(-5)^2-3(-5)-7=\square \\
3-9\left(7^2-2\right)-(-2)=\square & 2(-3)^2+30 \div(-6)= \square \\
& (-9)-(-7)\left(2^3-(-8)\right)= \square
\end{array}
\][/tex]



Answer :

Certainly! Let's evaluate each expression step-by-step by following the order of operations (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction).

1. Evaluating [tex]\((8-6)^2 - 3\)[/tex]:
[tex]\[ (8-6) = 2 \quad \text{(perform the subtraction inside the parentheses)} \][/tex]
[tex]\[ 2^2 = 4 \quad \text{(square the result)} \][/tex]
[tex]\[ 4 - 3 = 1 \quad \text{(subtract)} \][/tex]
So, [tex]\((8-6)^2 - 3 = 1\)[/tex].

2. Evaluating [tex]\(9 \cdot 7^2 + 2\)[/tex]:
[tex]\[ 7^2 = 49 \quad \text{(square \(7\))} \][/tex]
[tex]\[ 9 \cdot 49 = 441 \quad \text{(multiply)} \][/tex]
[tex]\[ 441 + 2 = 443 \quad \text{(add)} \][/tex]
So, [tex]\(9 \cdot 7^2 + 2 = 443\)[/tex].

3. Evaluating [tex]\((-5)^2 - 3(-5) - 7\)[/tex]:
[tex]\[ (-5)^2 = 25 \quad \text{(square \(-5\))} \][/tex]
[tex]\[ -3(-5) = 15 \quad \text{(multiply \( -3 \) by \(-5\))} \][/tex]
[tex]\[ 25 + 15 = 40 \quad \text{(add)} \][/tex]
[tex]\[ 40 - 7 = 33 \quad \text{(subtract)} \][/tex]
So, [tex]\((-5)^2 - 3(-5) - 7 = 33\)[/tex].

4. Evaluating [tex]\(3 - 9(7^2 - 2) - (-2)\)[/tex]:
[tex]\[ 7^2 = 49 \quad \text{(square \(7\))} \][/tex]
[tex]\[ 49 - 2 = 47 \quad \text{(subtract inside the parentheses)} \][/tex]
[tex]\[ 9 \cdot 47 = 423 \quad \text{(multiply)} \][/tex]
[tex]\[ 3 - 423 = -420 \quad \text{(subtract)} \][/tex]
[tex]\[ -420 + 2 = -418 \quad \text{(adding \(-(-2)\))} \][/tex]
So, [tex]\(3 - 9(7^2 - 2) - (-2) = -418\)[/tex].

5. Evaluating [tex]\(2(-3)^2 + 30 \div (-6)\)[/tex]:
[tex]\[ (-3)^2 = 9 \quad \text{(square \(-3\))} \][/tex]
[tex]\[ 2 \cdot 9 = 18 \quad \text{(multiply)} \][/tex]
[tex]\[ 30 \div (-6) = -5 \quad \text{(divide)} \][/tex]
[tex]\[ 18 + (-5) = 13 \quad \text{(add)} \][/tex]
So, [tex]\(2(-3)^2 + 30 \div (-6) = 13.0\)[/tex].

6. Evaluating [tex]\((-9) - (-7)(2^3 - (-8))\)[/tex]:
[tex]\[ 2^3 = 8 \quad \text{(cube \(2\))} \][/tex]
[tex]\[ -8 + 8 = 16 \quad \text{(subtract inside the parentheses)} \][/tex]
[tex]\[ -7 \cdot 16 = -112 \quad \text{(multiply)} \][/tex]
[tex]\[ -9 - (-112) = -9 + 112 = 103 \quad \text{(subtract by adding the positive value)} \][/tex]
So, [tex]\((-9) - (-7)(2^3 - (-8)) = 103\)[/tex].

Thus, the final answers are:
1. [tex]\( (8-6)^2 - 3 = 1 \)[/tex]
2. [tex]\( 9 \cdot 7^2 + 2 = 443 \)[/tex]
3. [tex]\( (-5)^2 - 3(-5) - 7 = 33 \)[/tex]
4. [tex]\( 3 - 9(7^2 - 2) - (-2) = -418 \)[/tex]
5. [tex]\( 2(-3)^2 + 30 \div (-6) = 13.0 \)[/tex]
6. [tex]\( (-9) - (-7)(2^3 - (-8)) = 103 \)[/tex]