Sure, let's solve the expression [tex]\(6a \cdot m \cdot (m - a)\)[/tex] step by step:
To simplify this expression, we isolate and focus on the terms inside the parentheses first. The expression inside the parentheses is [tex]\((m - a)\)[/tex].
Next, we distribute the [tex]\(6am\)[/tex] to each term inside the parentheses [tex]\((m - a)\)[/tex]. Here's how this distribution works:
1. Multiply [tex]\(6am\)[/tex] by [tex]\(m\)[/tex]:
[tex]\[
6am \cdot m = 6am^2
\][/tex]
2. Multiply [tex]\(6am\)[/tex] by [tex]\(-a\)[/tex]:
[tex]\[
6am \cdot (-a) = -6a^2m
\][/tex]
Now, we combine these two results to get the final expression:
[tex]\[
6am \cdot m + 6am \cdot (-a) = 6am^2 - 6a^2m
\][/tex]
Thus, the simplified form of the given expression [tex]\(6a \cdot m \cdot (m - a)\)[/tex] is:
[tex]\[
6am^2 - 6a^2m
\][/tex]