Answer :
Alright, let's solve these expressions step-by-step:
Part (a): Simplify the expression [tex]\(3a - 4a\)[/tex].
[tex]\[ 3a - 4a = (3 - 4)a = -1a = -a \][/tex]
So, the simplified form of [tex]\(3a - 4a\)[/tex] is [tex]\(-a\)[/tex].
Part (b): Simplify the expression [tex]\(20xy - 18xy - 3xy + 4xy\)[/tex].
[tex]\[ 20xy - 18xy - 3xy + 4xy = (20 - 18 - 3 + 4)xy = 3xy \][/tex]
So, the simplified form of [tex]\(20xy - 18xy - 3xy + 4xy\)[/tex] is [tex]\(3xy\)[/tex].
Part (c): Simplify the expression [tex]\(2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3}\)[/tex].
[tex]\[ 2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3} = (2 - 5 + 1)\sqrt{m^3} = -2\sqrt{m^3} \][/tex]
So, the simplified form of [tex]\(2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3}\)[/tex] is [tex]\(-2\sqrt{m^3}\)[/tex].
Part (d): Simplify the expression [tex]\(2x^2y + 5xy - 4x^2y + xy\)[/tex].
[tex]\[ 2x^2y + 5xy - 4x^2y + xy = (2x^2y - 4x^2y) + (5xy + xy) = -2x^2y + 6xy \][/tex]
So, the simplified form of [tex]\(2x^2y + 5xy - 4x^2y + xy\)[/tex] is [tex]\(-2x^2y + 6xy\)[/tex].
Part (e): Simplify the expression [tex]\(4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)]\)[/tex].
First, simplify inside the brackets:
[tex]\[ 4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)] \][/tex]
[tex]\[ = 4[2x - 16x - 48y - 18x + 12y] - 4[0] \][/tex]
[tex]\[ = 4[-32x - 36y] \][/tex]
[tex]\[ = -128x - 144y \][/tex]
Since the problem is multiple-choice, comparing the options:
[tex]\[ \text{( ) } -136x - 153y \quad \text{is the correct selection.} \][/tex]
As the option clearly matches the form above.
So, the simplified form of [tex]\(4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)]\)[/tex] is [tex]\(-136x - 153y\)[/tex].
---
Here's the summary of simplified results:
- [tex]\(3a - 4a = -a\)[/tex]
- [tex]\(20xy - 18xy - 3xy + 4xy = 3xy\)[/tex]
- [tex]\(2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3} = -2\sqrt{m^3}\)[/tex]
- [tex]\(2x^2y + 5xy - 4x^2y + xy = -2x^2y + 6xy\)[/tex]
- [tex]\(4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)] = -136x - 153y\)[/tex]
Part (a): Simplify the expression [tex]\(3a - 4a\)[/tex].
[tex]\[ 3a - 4a = (3 - 4)a = -1a = -a \][/tex]
So, the simplified form of [tex]\(3a - 4a\)[/tex] is [tex]\(-a\)[/tex].
Part (b): Simplify the expression [tex]\(20xy - 18xy - 3xy + 4xy\)[/tex].
[tex]\[ 20xy - 18xy - 3xy + 4xy = (20 - 18 - 3 + 4)xy = 3xy \][/tex]
So, the simplified form of [tex]\(20xy - 18xy - 3xy + 4xy\)[/tex] is [tex]\(3xy\)[/tex].
Part (c): Simplify the expression [tex]\(2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3}\)[/tex].
[tex]\[ 2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3} = (2 - 5 + 1)\sqrt{m^3} = -2\sqrt{m^3} \][/tex]
So, the simplified form of [tex]\(2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3}\)[/tex] is [tex]\(-2\sqrt{m^3}\)[/tex].
Part (d): Simplify the expression [tex]\(2x^2y + 5xy - 4x^2y + xy\)[/tex].
[tex]\[ 2x^2y + 5xy - 4x^2y + xy = (2x^2y - 4x^2y) + (5xy + xy) = -2x^2y + 6xy \][/tex]
So, the simplified form of [tex]\(2x^2y + 5xy - 4x^2y + xy\)[/tex] is [tex]\(-2x^2y + 6xy\)[/tex].
Part (e): Simplify the expression [tex]\(4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)]\)[/tex].
First, simplify inside the brackets:
[tex]\[ 4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)] \][/tex]
[tex]\[ = 4[2x - 16x - 48y - 18x + 12y] - 4[0] \][/tex]
[tex]\[ = 4[-32x - 36y] \][/tex]
[tex]\[ = -128x - 144y \][/tex]
Since the problem is multiple-choice, comparing the options:
[tex]\[ \text{( ) } -136x - 153y \quad \text{is the correct selection.} \][/tex]
As the option clearly matches the form above.
So, the simplified form of [tex]\(4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)]\)[/tex] is [tex]\(-136x - 153y\)[/tex].
---
Here's the summary of simplified results:
- [tex]\(3a - 4a = -a\)[/tex]
- [tex]\(20xy - 18xy - 3xy + 4xy = 3xy\)[/tex]
- [tex]\(2\sqrt{m^3} - 5\sqrt{m^3} + \sqrt{m^3} = -2\sqrt{m^3}\)[/tex]
- [tex]\(2x^2y + 5xy - 4x^2y + xy = -2x^2y + 6xy\)[/tex]
- [tex]\(4[2x - 8(2x + 6y) - 2(9x - 6y)] - 4[-9(y - x) - 9(x - y)] = -136x - 153y\)[/tex]