Calculate the volume of a cylinder that has a radius of 19 feet and a height of 21 feet.

[tex]V = \pi r^2 h[/tex]

[tex]V = \pi (19)^2 (21)[/tex]

[tex]V = \pi \cdot 361 \cdot 21[/tex]

[tex]V = 7599 \pi \, \text{ft}^3[/tex]

Thus, the volume is:

[tex]V = 7599 \pi \, \text{ft}^3[/tex]



Answer :

Sure, let's solve this step by step.

1. Understand the Problem:
The problem involves calculating the volume of a cylinder given its radius and height. Specifically, the radius [tex]\( r = 19 \)[/tex] feet and the height [tex]\( h = 21 \)[/tex] feet. We know the formula for the volume [tex]\( V \)[/tex] of a cylinder:

[tex]\[ V = \pi r^2 h \][/tex]

2. Substitute the Given Values:
Substitute the given radius and height into the formula:

[tex]\[ V = \pi \times 19^2 \times 21 \][/tex]

3. Perform Intermediate Calculations:
First, calculate the square of the radius:

[tex]\[ 19^2 = 361 \][/tex]

Then, multiply this result by the height:

[tex]\[ 361 \times 21 = 7581 \][/tex]

4. Include the Value of [tex]\( \pi \)[/tex]:
Multiply the result by [tex]\( \pi \)[/tex] (approximately 3.14159):

[tex]\[ V = 7581 \times \pi \approx 7581 \times 3.14159 \approx 23816.413906864218 \, \text{ft}^3 \][/tex]

So, the volume of the cylinder is approximately [tex]\( 23816.413906864218 \)[/tex] cubic feet.

5. Express in Terms of [tex]\( \sqrt{x} \)[/tex] ft³:
We also need to express this volume in the form [tex]\( \sqrt{x} \, \text{ft}^3 \)[/tex].

6. Find [tex]\( x \)[/tex]:
Since [tex]\( V = \sqrt{x} \)[/tex], then:

[tex]\[ x = V^2 \approx 23816.413906864218^2 \approx 567221571.3830754 \][/tex]

Therefore, the volume [tex]\( V \)[/tex] of the cylinder is [tex]\( \sqrt{567221571.3830754} \)[/tex] cubic feet.

To summarize the results:
- Radius, [tex]\( r = 19 \)[/tex] feet
- Height, [tex]\( h = 21 \)[/tex] feet
- Volume, [tex]\( V \approx 23816.413906864218 \)[/tex] cubic feet
- In the form [tex]\( \sqrt{x} \)[/tex], [tex]\( x \approx 567221571.3830754 \)[/tex]

The final answer is:
[tex]\[ V = \sqrt{567221571.3830754} \text{ ft}^3 \][/tex]