Use the Quotient Property to generate an equivalent expression to [tex]\frac{9^{\frac{3}{5}}}{9^{\frac{1}{5}}}[/tex]. What is the simplified exponent?

[tex]\square[/tex]



Answer :

Sure! Let's simplify the given expression using the Quotient Property.

The Quotient Property for exponents states that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex], where [tex]\(a\)[/tex] is the base and [tex]\(m\)[/tex] and [tex]\(n\)[/tex] are the exponents. In this case, the base [tex]\(a\)[/tex] is 9, the numerator exponent [tex]\(m\)[/tex] is [tex]\(\frac{3}{5}\)[/tex], and the denominator exponent [tex]\(n\)[/tex] is [tex]\(\frac{1}{5}\)[/tex].

Following these steps:

1. Identify the exponents: The exponent in the numerator is [tex]\(\frac{3}{5}\)[/tex] and the exponent in the denominator is [tex]\(\frac{1}{5}\)[/tex].

2. Apply the Quotient Property: Subtract the exponent in the denominator from the exponent in the numerator.
[tex]\[ \frac{9^{\frac{3}{5}}}{9^{\frac{1}{5}}} = 9^{\frac{3}{5} - \frac{1}{5}} \][/tex]

3. Perform the subtraction inside the exponent:
[tex]\[ \frac{3}{5} - \frac{1}{5} = \frac{3 - 1}{5} = \frac{2}{5} \][/tex]

So, the simplified exponent is [tex]\(\frac{2}{5}\)[/tex].

The result is:
[tex]\[ 9^{\frac{2}{5}} \][/tex]

Therefore, when simplified, the exponent [tex]\(\frac{2}{5}\)[/tex] is the answer.