The sets [tex]M[/tex] and [tex]F[/tex] are given below.

[tex]\[
\begin{array}{l}
M = \{-2, 0, 1, 7, 8\} \\
F = \{-2, -1, 2, 6\}
\end{array}
\][/tex]

1. Find the intersection of [tex]M[/tex] and [tex]F[/tex].
2. Find the union of [tex]M[/tex] and [tex]F[/tex].

Write your answers using set notation (in roster form).

[tex]M \cap F = \square[/tex]

[tex]M \cup F = \square[/tex]



Answer :

Let's solve the given problems step-by-step. The sets provided are as follows:
[tex]\[ M = \{-2, 0, 1, 7, 8\} \][/tex]
[tex]\[ F = \{-2, -1, 2, 6\} \][/tex]

First, let's find the intersection of the sets [tex]\(M\)[/tex] and [tex]\(F\)[/tex].

### Intersection of [tex]\(M\)[/tex] and [tex]\(F\)[/tex]

The intersection of two sets [tex]\(M\)[/tex] and [tex]\(F\)[/tex] is a set containing all elements that are both in [tex]\(M\)[/tex] and in [tex]\(F\)[/tex].

By inspecting the two sets [tex]\(M\)[/tex] and [tex]\(F\)[/tex] we see the common elements:
[tex]\[M \cap F: \{-2\} \][/tex]

So,
[tex]\[ M \cap F = \{-2\} \][/tex]

### Union of [tex]\(M\)[/tex] and [tex]\(F\)[/tex]

The union of two sets [tex]\(M\)[/tex] and [tex]\(F\)[/tex] is a set containing all elements that are in [tex]\(M\)[/tex], in [tex]\(F\)[/tex], or in both.

By combining all unique elements from both [tex]\(M\)[/tex] and [tex]\(F\)[/tex] we get:
[tex]\[M \cup F: \{-2, 0, 1, 7, 8, -1, 2, 6\} \][/tex]

So,
[tex]\[ M \cup F = \{0, 1, 2, 6, 7, 8, -1, -2\} \][/tex]

Putting it all together, we have:
[tex]\[ \begin{array}{l} M \cap F = \{-2\} \\ M \cup F = \{0, 1, 2, 6, 7, 8, -1, -2\} \end{array} \][/tex]