Select the correct answer.

Which is the simplified form of the expression [tex]3\left(\frac{7}{5} x+4\right)-2\left(\frac{3}{2}-\frac{5}{4} x\right)[/tex]?

A. [tex]-\frac{39}{5} x-\frac{11}{2}[/tex]
B. [tex]\frac{67}{10} x+9[/tex]
C. [tex]\frac{3}{10} x+\frac{5}{2}[/tex]
D. [tex]15+\frac{76}{10} x[/tex]



Answer :

To find the simplified form of the expression [tex]\( 3\left(\frac{7}{5} x + 4\right) - 2\left(\frac{3}{2} - \frac{5}{4} x\right) \)[/tex], we can break this down into smaller steps.

First, distribute the constants inside each parenthesis:
1. [tex]\( 3\left(\frac{7}{5} x + 4\right) \)[/tex]:
[tex]\[ 3 \cdot \frac{7}{5} x + 3 \cdot 4 = \frac{21}{5} x + 12 \][/tex]

2. [tex]\( 2\left(\frac{3}{2} - \frac{5}{4} x\right) \)[/tex]:
[tex]\[ 2 \cdot \frac{3}{2} - 2 \cdot \frac{5}{4} x = 3 - \frac{10}{4} x = 3 - \frac{5}{2} x \][/tex]

Now, substitute these back into the original expression:
[tex]\[ \left(\frac{21}{5} x + 12\right) - \left(3 - \frac{5}{2} x\right) \][/tex]

Next, distribute the negative sign and simplify:
[tex]\[ \frac{21}{5} x + 12 - 3 + \frac{5}{2} x \][/tex]

Combine like terms:
[tex]\[ \left(\frac{21}{5} x + \frac{5}{2} x\right) + (12 - 3) \][/tex]

First, find a common denominator for the x terms:
- [tex]\(\frac{21}{5} x = \frac{42}{10} x\)[/tex]
- [tex]\(\frac{5}{2} x = \frac{25}{10} x\)[/tex]

Add these:
[tex]\[ \frac{42}{10} x + \frac{25}{10} x = \frac{67}{10} x \][/tex]

Combine the constants:
[tex]\[ 12 - 3 = 9 \][/tex]

So, the simplified form of the expression is:
[tex]\[ \frac{67}{10} x + 9 \][/tex]

Thus, the correct answer is [tex]\( \boxed{\frac{67}{10} x + 9} \)[/tex]. This corresponds to option B.