Which expressions are equivalent to [tex]\frac{3^{-8}}{3^{-4}}[/tex]?

Select all that apply.

A. [tex]3^{-12}[/tex]
B. [tex]3^{-4}[/tex]
C. [tex]3^2[/tex]
D. [tex]\frac{1}{3^2}[/tex]
E. [tex]\frac{1}{3^4}[/tex]
F. [tex]\frac{1}{3^{12}}[/tex]



Answer :

To find which expressions are equivalent to [tex]\(\frac{3^{-8}}{3^{-4}}\)[/tex], we can start by simplifying the exponent within the given expression.

### Step-by-Step Simplification:

1. Simplify the Exponents:
[tex]\[ \frac{3^{-8}}{3^{-4}} = 3^{-8 - (-4)} \][/tex]

2. Combine the Exponents:
Since subtracting a negative is the same as adding the positive:
[tex]\[ \frac{3^{-8}}{3^{-4}} = 3^{-8 + 4} = 3^{-4} \][/tex]

So, [tex]\(\frac{3^{-8}}{3^{-4}} = 3^{-4}\)[/tex].

### Equivalent Expressions:
Now we need to find which of the given options are equivalent to [tex]\(3^{-4}\)[/tex].

#### Exploring the Options:

- Option A: [tex]\(3^{-12}\)[/tex]
[tex]\[ 3^{-12} \neq 3^{-4} \][/tex]
This option is not equivalent.

- Option B: [tex]\(3^{-4}\)[/tex]
[tex]\[ 3^{-4} = 3^{-4} \][/tex]
This option is equivalent.

- Option C: [tex]\(3^2\)[/tex]
[tex]\[ 3^2 \neq 3^{-4} \][/tex]
This option is not equivalent.

- Option D: [tex]\(\frac{1}{3^2}\)[/tex]
[tex]\[ \frac{1}{3^2} = 3^{-2} \neq 3^{-4} \][/tex]
This option is not equivalent.

- Option E: [tex]\(\frac{1}{3^4}\)[/tex]
[tex]\[ \frac{1}{3^4} = 3^{-4} \][/tex]
This option is equivalent.

- Option F: [tex]\(\frac{1}{3^{12}}\)[/tex]
[tex]\[ \frac{1}{3^{12}} = 3^{-12} \neq 3^{-4} \][/tex]
This option is not equivalent.

### Conclusion:
The expressions equivalent to [tex]\(\frac{3^{-8}}{3^{-4}}\)[/tex] are:
- B: [tex]\(3^{-4}\)[/tex]
- E: [tex]\(\frac{1}{3^4}\)[/tex]

So, the correct selections are [tex]\(\boxed{B \text{ and } E}\)[/tex].