A ball is thrown from an initial height of 4 feet with an initial upward velocity of [tex]$21 \text{ ft/s}$[/tex]. The ball's height [tex]$h$[/tex] (in feet) after [tex][tex]$t$[/tex][/tex] seconds is given by the following:

[tex]
h = 4 + 21t - 16t^2
[/tex]

Find all values of [tex]$t$[/tex] for which the ball's height is 10 feet. Round your answer(s) to the nearest hundredth.

[tex]t = \square[/tex] seconds

[tex]\square[/tex]



Answer :

To find all the values of [tex]\( t \)[/tex] for which the ball's height is 10 feet, we start with the given quadratic equation for the ball's height:

[tex]\[ h(t) = 4 + 21t - 16t^2 \][/tex]

We need to find [tex]\( t \)[/tex] when the height [tex]\( h \)[/tex] is 10 feet.

[tex]\[ 4 + 21t - 16t^2 = 10 \][/tex]

Next, let's rearrange the equation to set it to zero:

[tex]\[ 4 + 21t - 16t^2 - 10 = 0 \][/tex]

Simplify the expression:

[tex]\[ -16t^2 + 21t - 6 = 0 \][/tex]

This is a quadratic equation in the standard form [tex]\( at^2 + bt + c = 0 \)[/tex], where:

[tex]\[ a = -16 \][/tex]
[tex]\[ b = 21 \][/tex]
[tex]\[ c = -6 \][/tex]

To solve this quadratic equation, we can use the quadratic formula:

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Plugging in the values for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ t = \frac{-21 \pm \sqrt{21^2 - 4(-16)(-6)}}{2(-16)} \][/tex]
[tex]\[ t = \frac{-21 \pm \sqrt{441 - 384}}{-32} \][/tex]
[tex]\[ t = \frac{-21 \pm \sqrt{57}}{-32} \][/tex]

We now calculate the two possible solutions for [tex]\( t \)[/tex]:

[tex]\[ t = \frac{-21 + \sqrt{57}}{-32} \][/tex]
[tex]\[ t = \frac{-21 - \sqrt{57}}{-32} \][/tex]

By evaluating these expressions, we get the two values of [tex]\( t \)[/tex]:

[tex]\[ t \approx 0.42 \][/tex]
[tex]\[ t \approx 0.89 \][/tex]

Thus, the values of [tex]\( t \)[/tex] for which the ball's height is 10 feet are:

[tex]\[ t = 0.42 \text{ seconds or } 0.89 \text{ seconds} \][/tex]

So the answer is:

[tex]\[ t = 0.42 \text{ or } 0.89 \text{ seconds} \][/tex]