Solve the equation, eliminating any extraneous solutions.

[tex]\[ \frac{x^2+9}{x+9} = \frac{90}{x+9} \][/tex]

A. [tex]\(x = -9, 9\)[/tex]
B. [tex]\(x = 9\)[/tex]
C. [tex]\(x = -9\)[/tex]
D. [tex]\(x = -3, 3\)[/tex]



Answer :

To solve the equation

[tex]\[ \frac{x^2 + 9}{x + 9} = \frac{90}{x + 9}, \][/tex]

we start by noting that [tex]\( x \neq -9 \)[/tex] to avoid division by zero. Let's proceed step-by-step.

1. Cross-multiply to eliminate the denominators:

[tex]\[ (x^2 + 9) \cdot (x + 9) = 90 \cdot (x + 9). \][/tex]

2. Notice that both sides have the factor [tex]\( x + 9 \)[/tex]. We can cancel out [tex]\( x + 9 \)[/tex] from both sides, provided [tex]\( x \neq -9 \)[/tex]:

[tex]\[ x^2 + 9 = 90. \][/tex]

3. Move 90 to the left side and simplify:

[tex]\[ x^2 + 9 - 90 = 0. \][/tex]

4. Simplify the equation:

[tex]\[ x^2 - 81 = 0. \][/tex]

5. Factor the quadratic equation:

[tex]\[ (x + 9)(x - 9) = 0. \][/tex]

6. Solve for [tex]\( x \)[/tex]:

[tex]\[ x + 9 = 0 \quad \text{or} \quad x - 9 = 0. \][/tex]

[tex]\[ x = -9 \quad \text{or} \quad x = 9. \][/tex]

7. Check for extraneous solutions:

We must check each potential solution in the original equation.

- For [tex]\( x = 9 \)[/tex]:

[tex]\[ \frac{9^2 + 9}{9 + 9} = \frac{90}{9 + 9} \][/tex]

[tex]\[ \frac{81 + 9}{18} = \frac{90}{18} \][/tex]

[tex]\[ \frac{90}{18} = 5 \quad \text{and} \quad \frac{90}{18} = 5. \][/tex]

The equation holds true.

- For [tex]\( x = -9 \)[/tex]:

Substituting [tex]\( x = -9 \)[/tex] into the original equation results in division by zero, which is undefined. Thus, [tex]\( x = -9 \)[/tex] is an extraneous solution.

Therefore, the valid solution to the equation is:

[tex]\[ x = 9. \][/tex]