Select the correct answer.

What is the solution for [tex]$x$[/tex] in the equation?

[tex]
\frac{1}{2} - x + \frac{3}{2} = x - 4
[/tex]

A. [tex]x = 3[/tex]

B. [tex]x = -3[/tex]

C. [tex]x = -\frac{1}{3}[/tex]

D. [tex]x = \frac{1}{3}[/tex]



Answer :

To solve for [tex]\( x \)[/tex] in the equation

[tex]\[ \frac{1}{2} - x + \frac{3}{2} = x - 4, \][/tex]

follow these steps:

1. Simplify the left-hand side:

Combine the constants [tex]\( \frac{1}{2} \)[/tex] and [tex]\( \frac{3}{2} \)[/tex]:

[tex]\[ \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2. \][/tex]

So the equation simplifies to:

[tex]\[ 2 - x = x - 4. \][/tex]

2. Rearrange the equation to isolate [tex]\( x \)[/tex]:

Add [tex]\( x \)[/tex] to both sides of the equation to eliminate the [tex]\( -x \)[/tex] term on the left-hand side:

[tex]\[ 2 - x + x = x - 4 + x, \][/tex]

which simplifies to:

[tex]\[ 2 = 2x - 4. \][/tex]

3. Isolate the [tex]\( x \)[/tex] term:

Add 4 to both sides of the equation to move the constant term on the right-hand side to the left:

[tex]\[ 2 + 4 = 2x, \][/tex]

which simplifies to:

[tex]\[ 6 = 2x. \][/tex]

4. Solve for [tex]\( x \)[/tex]:

Divide both sides by 2 to isolate [tex]\( x \)[/tex]:

[tex]\[ x = \frac{6}{2} = 3. \][/tex]

Therefore, the solution for [tex]\( x \)[/tex] is [tex]\( 3 \)[/tex].

Given the choices, the correct answer is:

A. [tex]\( x = 3 \)[/tex]