```latex
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Properties of Exponents} \\
\hline Simplify the following expressions. Assume all variables are nonzero numbers. \\
\hline Original Expression & Simplified Expression \\
\hline [tex]$\left(-8 c^0\right)^5$[/tex] & \\
\hline [tex]$(-9 x)^3 - 9 x^3$[/tex] & \\
\hline [tex]$5 d^0 + 6 d^0$[/tex] & \\
\hline [tex]$\left(\frac{2 x^2 + 7 x + 4}{9}\right)^0$[/tex] & \\
\hline
\end{tabular}
```



Answer :

Let's simplify each expression step-by-step using the properties of exponents:

### Expression 1: [tex]\(\left(-8 c^0\right)^5\)[/tex]

1. Understanding [tex]\(c^0\)[/tex]: By the property of exponents, any nonzero number raised to the power of 0 is 1. Therefore, [tex]\(c^0 = 1\)[/tex].

2. Simplify the Expression:
[tex]\[ \left(-8 c^0\right)^5 = \left(-8 \cdot 1\right)^5 = \left(-8\right)^5 \][/tex]

3. Calculate [tex]\(\left(-8\right)^5\)[/tex]:
[tex]\[ \left(-8\right)^5 = (-8) \cdot (-8) \cdot (-8) \cdot (-8) \cdot (-8) = -32768 \][/tex]

So, the simplified expression is:
[tex]\[ -32768 \][/tex]

### Expression 2: [tex]\((-9 x)^3 - 9 x^3\)[/tex]

1. Simplify [tex]\((-9x)^3\)[/tex]:
[tex]\[ (-9x)^3 = (-9)^3 \cdot x^3 = -729 \cdot x^3 = -729x^3 \][/tex]

2. Subtract [tex]\(9x^3\)[/tex] from [tex]\(-729x^3\)[/tex]:
[tex]\[ (-729x^3) - (9x^3) = -729x^3 - 9x^3 \][/tex]

3. Combine like terms:
[tex]\[ -729x^3 - 9x^3 = -738x^3 \][/tex]

So, the simplified expression is:
[tex]\[ -738x^3 \][/tex]

### Expression 3: [tex]\(5 d^0 + 6 d^0\)[/tex]

1. Understanding [tex]\(d^0\)[/tex]: By the property of exponents, any nonzero number raised to the power of 0 is 1. Therefore, [tex]\(d^0 = 1\)[/tex].

2. Simplify the Expression:
[tex]\[ 5 d^0 + 6 d^0 = 5 \cdot 1 + 6 \cdot 1 = 5 + 6 \][/tex]

So, the simplified expression is:
[tex]\[ 11 \][/tex]

### Expression 4: [tex]\(\left(\frac{2 x^2 + 7 x + 4}{9}\right)^0\)[/tex]

1. Understanding [tex]\(\left(\text{anything}\right)^0\)[/tex]: By the property of exponents, any nonzero expression raised to the power of 0 is 1.

2. Simplify the Expression:
[tex]\[ \left(\frac{2 x^2 + 7 x + 4}{9}\right)^0 = 1 \][/tex]

So, the simplified expression is:
[tex]\[ 1 \][/tex]

### Summary Table:

[tex]\[ \begin{tabular}{|c|c|} \hline \multicolumn{2}{|c|}{Properties of Exponents} \\ \hline Simplify the following expressions where variables are nonzero numbers \\ \hline Original Expression & Simplified Expression \\ \hline \(\left(-8 c^0\right)^5\) & \(-32768\) \\ \hline \((-9 x)^3 - 9 x^3\) & \(-738x^3\) \\ \hline \(5 d^0 + 6 d^0\) & \(11\) \\ \hline \(\left(\frac{2 x^2 + 7 x + 4}{9}\right)^0\) & \(1\) \\ \hline \end{tabular} \][/tex]