Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each equation with the correct solution.

[tex]\[
\begin{array}{l}
x=9 \\
x=\frac{7}{3} \\
x=-15 \\
x=-\frac{7}{3} \\
x=8 \\
x=-8 \\
x=15 \\
x=-9 \\
\frac{1}{3}(5x-9)=2\left(\frac{1}{3}x+6\right) \\
\longrightarrow \\
5(x+7)-3(x-4)=7x+2 \\
\longrightarrow \\
4(3x+5)-3=9x-7 \\
\end{array}
\][/tex]



Answer :

To match each equation with the correct solution, we need to analyze and solve each equation step by step:

1. For the equation:
[tex]\[ \frac{1}{3}(5x - 9) = 2\left(\frac{1}{3}x + 6\right) \][/tex]
Solving this, we find:
[tex]\[ x = 15 \][/tex]

2. For the equation:
[tex]\[ 5(x + 7) - 3(x - 4) = 7x + 2 \][/tex]
Solving this, we find:
[tex]\[ x = 9 \][/tex]

3. For the equation:
[tex]\[ 4(3x + 5) - 3 = 9x - 7 \][/tex]
Solving this, we find:
[tex]\[ x = -8 \][/tex]

So, the correct pairs are:
- [tex]\(\frac{1}{3}(5x - 9) = 2\left(\frac{1}{3}x + 6\right) \rightarrow x = 15\)[/tex]
- [tex]\(5(x + 7) - 3(x - 4) = 7x + 2 \rightarrow x = 9\)[/tex]
- [tex]\(4(3x + 5) - 3 = 9x - 7 \rightarrow x = -8\)[/tex]

Thus, the matching pairs are:
- [tex]\(x = 15\)[/tex]
- [tex]\(x = 9\)[/tex]
- [tex]\(x = -8\)[/tex]