Answer :
To solve the equation
[tex]\[ \frac{x}{h} + 1 = -2 \][/tex]
1. First, isolate [tex]\( \frac{x}{h} \)[/tex] by subtracting 1 from both sides:
[tex]\[ \frac{x}{h} = -2 - 1 \][/tex]
2. Simplify the right-hand side:
[tex]\[ \frac{x}{h} = -3 \][/tex]
3. Multiply both sides by [tex]\( h \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = -3h \][/tex]
Thus, the value of [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] is [tex]\( -3h \)[/tex].
Next, we find the value of [tex]\( x \)[/tex] when [tex]\( h = 4 \)[/tex]:
1. Substitute [tex]\( h = 4 \)[/tex] into the equation [tex]\( x = -3h \)[/tex]:
[tex]\[ x = -3 \times 4 \][/tex]
2. Perform the multiplication:
[tex]\[ x = -12 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] when [tex]\( h = 4 \)[/tex] is [tex]\( -12 \)[/tex].
So, our answers are:
- The value of [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] is [tex]\( -3h \)[/tex]
- The value of [tex]\( x \)[/tex] when [tex]\( h = 4 \)[/tex] is [tex]\( -12 \)[/tex]
[tex]\[ \frac{x}{h} + 1 = -2 \][/tex]
1. First, isolate [tex]\( \frac{x}{h} \)[/tex] by subtracting 1 from both sides:
[tex]\[ \frac{x}{h} = -2 - 1 \][/tex]
2. Simplify the right-hand side:
[tex]\[ \frac{x}{h} = -3 \][/tex]
3. Multiply both sides by [tex]\( h \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = -3h \][/tex]
Thus, the value of [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] is [tex]\( -3h \)[/tex].
Next, we find the value of [tex]\( x \)[/tex] when [tex]\( h = 4 \)[/tex]:
1. Substitute [tex]\( h = 4 \)[/tex] into the equation [tex]\( x = -3h \)[/tex]:
[tex]\[ x = -3 \times 4 \][/tex]
2. Perform the multiplication:
[tex]\[ x = -12 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] when [tex]\( h = 4 \)[/tex] is [tex]\( -12 \)[/tex].
So, our answers are:
- The value of [tex]\( x \)[/tex] in terms of [tex]\( h \)[/tex] is [tex]\( -3h \)[/tex]
- The value of [tex]\( x \)[/tex] when [tex]\( h = 4 \)[/tex] is [tex]\( -12 \)[/tex]