Sure, let's go through the process of eliminating the negative exponents step-by-step.
### Step-by-Step Solution:
#### 1. Rewriting [tex]\( y^{-P} \)[/tex]:
A negative exponent indicates that the base is on the denominator. Specifically, for any variable [tex]\( y \)[/tex] raised to a negative exponent [tex]\( -P \)[/tex], it can be rewritten as:
[tex]\[ y^{-P} = \frac{1}{y^{P}} \][/tex]
So,
[tex]\[ y^{-P} = \frac{1}{y^P} \][/tex]
#### 2. Simplifying [tex]\( 13 v^{-7} \)[/tex]:
Similarly, for the expression [tex]\( 13 v^{-7} \)[/tex], the term [tex]\( v^{-7} \)[/tex] can be rewritten as [tex]\( \frac{1}{v^{7}} \)[/tex]. Therefore, the expression becomes:
[tex]\[ 13 v^{-7} = 13 \cdot \frac{1}{v^7} = \frac{13}{v^7} \][/tex]
So,
[tex]\[ 13 v^{-7} = \frac{13}{v^7} \][/tex]
### Final Answers:
1. [tex]\( y^{-P} = \frac{1}{y^P} \)[/tex]
2. [tex]\( 13 v^{-7} = \frac{13}{v^7} \)[/tex]
These are the simplified forms of the given expressions with the negative exponents eliminated.