Answered

Point [tex]\( P \)[/tex] is on line segment [tex]\(\overline{OQ}\)[/tex]. Given [tex]\( PQ = x + 7 \)[/tex], [tex]\( OP = 4x - 10 \)[/tex], and [tex]\( OQ = 4x \)[/tex], determine the numerical length of [tex]\(\overline{OQ}\)[/tex].

[tex]\[
OQ = \square
\][/tex]



Answer :

Let's solve the given problem step by step. We know that point [tex]\( P \)[/tex] is on line segment [tex]\( \overline{OQ} \)[/tex]. The problem provides the following expressions for the lengths of the segments:

- [tex]\( PQ = x + 7 \)[/tex]
- [tex]\( OP = 4x - 10 \)[/tex]
- [tex]\( OQ = 4x \)[/tex]

Since [tex]\( P \)[/tex] lies on the line segment [tex]\( \overline{OQ} \)[/tex], the sum of the lengths of [tex]\( \overline{OP} \)[/tex] and [tex]\( \overline{PQ} \)[/tex] must equal the length of [tex]\( \overline{OQ} \)[/tex]:

[tex]\[ OP + PQ = OQ \][/tex]

Substituting the given expressions into this equation, we get:

[tex]\[ (4x - 10) + (x + 7) = 4x \][/tex]

Now combine like terms on the left side of the equation:

[tex]\[ 4x - 10 + x + 7 = 4x \][/tex]

This simplifies to:

[tex]\[ 5x - 3 = 4x \][/tex]

Next, we solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex] on one side of the equation:

[tex]\[ 5x - 4x = 3 \][/tex]

[tex]\[ x = 3 \][/tex]

Now that we have the value of [tex]\( x \)[/tex], we substitute [tex]\( x = 3 \)[/tex] back into the expression for the length of [tex]\( \overline{OQ} \)[/tex]:

[tex]\[ OQ = 4x \][/tex]

[tex]\[ OQ = 4(3) \][/tex]

[tex]\[ OQ = 12 \][/tex]

Thus, the numerical length of [tex]\( \overline{OQ} \)[/tex] is:

[tex]\[ OQ = 12 \][/tex]