Answer :

Let's evaluate the expression step-by-step for [tex]\( m = 4 \)[/tex].

The given expression is:
[tex]\[ 2\left(5 - \left(\frac{1}{2} m\right)\right) - 7 \][/tex]

### Step 1: Evaluate the inner term [tex]\(\left(\frac{1}{2} m\right)\)[/tex]
Since [tex]\( m = 4 \)[/tex]:
[tex]\[ \frac{1}{2} \cdot 4 = 2 \][/tex]

### Step 2: Evaluate [tex]\(5 - \left(\frac{1}{2} m\right)\)[/tex]
Substitute the value we obtained in Step 1 ([tex]\(2\)[/tex]):
[tex]\[ 5 - 2 = 3 \][/tex]

### Step 3: Evaluate [tex]\(2 \left(5 - \left(\frac{1}{2} m\right)\right)\)[/tex]
Substitute the value we obtained in Step 2 ([tex]\(3\)[/tex]):
[tex]\[ 2 \cdot 3 = 6 \][/tex]

### Step 4: Evaluate the final expression [tex]\(2\left(5 - \left(\frac{1}{2} m\right)\right) - 7\)[/tex]
Substitute the value we obtained in Step 3 ([tex]\(6\)[/tex]):
[tex]\[ 6 - 7 = -1 \][/tex]

Thus, the result of the expression [tex]\( 2\left(5 - \left(\frac{1}{2} 4\right)\right) - 7 \)[/tex] is:
[tex]\[ \boxed{-1} \][/tex]

So the correct answer is:
[tex]\[ -1 \][/tex]

Answer:

C. -1

Step-by-step explanation:

Given:

  • [tex] 2\left(5-\left(\frac{1}{2} m\right)\right)-7 [/tex]
  • Where m=4.

To evaluate the given expression we need to use PEMDAS

[tex]2\left(5-\left(\frac{1}{2} \times 4\right)\right)-7[/tex]

Multiplying 4 by 1/2

[tex]2\left(5-\left(\frac{4}{2} \right)\right)-7[/tex]

[tex]2\left(5-\left 2 \right)-7[/tex]

Subtracting 2 from 5

[tex]2\left(3 \right)-7[/tex]

Multiplying 2 by 3

[tex]6-7[/tex]

[tex]-1[/tex]

Therefore, the final answer is: C. -1