Answer :
Let's evaluate the expression step-by-step for [tex]\( m = 4 \)[/tex].
The given expression is:
[tex]\[ 2\left(5 - \left(\frac{1}{2} m\right)\right) - 7 \][/tex]
### Step 1: Evaluate the inner term [tex]\(\left(\frac{1}{2} m\right)\)[/tex]
Since [tex]\( m = 4 \)[/tex]:
[tex]\[ \frac{1}{2} \cdot 4 = 2 \][/tex]
### Step 2: Evaluate [tex]\(5 - \left(\frac{1}{2} m\right)\)[/tex]
Substitute the value we obtained in Step 1 ([tex]\(2\)[/tex]):
[tex]\[ 5 - 2 = 3 \][/tex]
### Step 3: Evaluate [tex]\(2 \left(5 - \left(\frac{1}{2} m\right)\right)\)[/tex]
Substitute the value we obtained in Step 2 ([tex]\(3\)[/tex]):
[tex]\[ 2 \cdot 3 = 6 \][/tex]
### Step 4: Evaluate the final expression [tex]\(2\left(5 - \left(\frac{1}{2} m\right)\right) - 7\)[/tex]
Substitute the value we obtained in Step 3 ([tex]\(6\)[/tex]):
[tex]\[ 6 - 7 = -1 \][/tex]
Thus, the result of the expression [tex]\( 2\left(5 - \left(\frac{1}{2} 4\right)\right) - 7 \)[/tex] is:
[tex]\[ \boxed{-1} \][/tex]
So the correct answer is:
[tex]\[ -1 \][/tex]
The given expression is:
[tex]\[ 2\left(5 - \left(\frac{1}{2} m\right)\right) - 7 \][/tex]
### Step 1: Evaluate the inner term [tex]\(\left(\frac{1}{2} m\right)\)[/tex]
Since [tex]\( m = 4 \)[/tex]:
[tex]\[ \frac{1}{2} \cdot 4 = 2 \][/tex]
### Step 2: Evaluate [tex]\(5 - \left(\frac{1}{2} m\right)\)[/tex]
Substitute the value we obtained in Step 1 ([tex]\(2\)[/tex]):
[tex]\[ 5 - 2 = 3 \][/tex]
### Step 3: Evaluate [tex]\(2 \left(5 - \left(\frac{1}{2} m\right)\right)\)[/tex]
Substitute the value we obtained in Step 2 ([tex]\(3\)[/tex]):
[tex]\[ 2 \cdot 3 = 6 \][/tex]
### Step 4: Evaluate the final expression [tex]\(2\left(5 - \left(\frac{1}{2} m\right)\right) - 7\)[/tex]
Substitute the value we obtained in Step 3 ([tex]\(6\)[/tex]):
[tex]\[ 6 - 7 = -1 \][/tex]
Thus, the result of the expression [tex]\( 2\left(5 - \left(\frac{1}{2} 4\right)\right) - 7 \)[/tex] is:
[tex]\[ \boxed{-1} \][/tex]
So the correct answer is:
[tex]\[ -1 \][/tex]
Answer:
C. -1
Step-by-step explanation:
Given:
- [tex] 2\left(5-\left(\frac{1}{2} m\right)\right)-7 [/tex]
- Where m=4.
To evaluate the given expression we need to use PEMDAS
[tex]2\left(5-\left(\frac{1}{2} \times 4\right)\right)-7[/tex]
Multiplying 4 by 1/2
[tex]2\left(5-\left(\frac{4}{2} \right)\right)-7[/tex]
[tex]2\left(5-\left 2 \right)-7[/tex]
Subtracting 2 from 5
[tex]2\left(3 \right)-7[/tex]
Multiplying 2 by 3
[tex]6-7[/tex]
[tex]-1[/tex]
Therefore, the final answer is: C. -1