Equation of a Circle: Mastery Test

Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match the circle equations in general form with their corresponding equations in standard form.

[tex]\[
\begin{array}{l}
x^2 + y^2 - 4x + 12y - 20 = 0 \\
(x-6)^2 + (y-4)^2 = 56 \\
x^2 + y^2 + 6x - 8y - 10 = 0 \\
(x-2)^2 + (y+6)^2 = 60 \\
3x^2 + 3y^2 + 12x + 18y - 15 = 0 \\
(x+2)^2 + (y+3)^2 = 18 \\
5x^2 + 5y^2 - 10x + 20y - 30 = 0 \\
(x+1)^2 + (y-6)^2 = 46 \\
2x^2 + 2y^2 - 24x - 16y - 8 = 0 \\
x^2 + y^2 + 2x - 12y - 9 = 0 \\
\end{array}
\][/tex]



Answer :

Sure, let's carefully match each general form equation with its corresponding standard form equation step-by-step. Given the equations and pairs, we can identify the matches as follows:

1. General Form: [tex]\( x^2 + y^2 - 4x + 12y - 20 = 0 \)[/tex]
- Standard Form: [tex]\( (x - 2)^2 + (y + 6)^2 = 60 \)[/tex]

2. General Form: [tex]\( x^2 + y^2 + 6x - 8y - 10 = 0 \)[/tex]
- Standard Form: [tex]\( (x - 1)^2 + (y - 6)^2 = 46 \)[/tex]

3. General Form: [tex]\( 3x^2 + 3y^2 + 12x + 18y - 15 = 0 \)[/tex]
- Standard Form: [tex]\( (x + 2)^2 + (y + 3)^2 = 18 \)[/tex]

4. General Form: [tex]\( 5x^2 + 5y^2 - 10x + 20y - 30 = 0 \)[/tex]
- Standard Form: [tex]\( x^2 + y^2 + 2x - 12y - 9 = 0 \)[/tex]

5. General Form: [tex]\( 2x^2 + 2y^2 - 24x - 16y - 8 = 0 \)[/tex]
- Standard Form: [tex]\( (x - 6)^2 + (y - 4)^2 = 56 \)[/tex]

So, the matching pairs are:

[tex]\[ \begin{aligned} &x^2 + y^2 - 4x + 12y - 20 = 0 &\rightarrow (x - 2)^2 + (y + 6)^2 = 60 \\ &x^2 + y^2 + 6x - 8y - 10 = 0 &\rightarrow (x - 1)^2 + (y - 6)^2 = 46 \\ &3x^2 + 3y^2 + 12x + 18y - 15 = 0 &\rightarrow (x + 2)^2 + (y + 3)^2 = 18 \\ &5x^2 + 5y^2 - 10x + 20y - 30 = 0 &\rightarrow x^2 + y^2 + 2x - 12y - 9 = 0 \\ &2x^2 + 2y^2 - 24x - 16y - 8 = 0 &\rightarrow (x - 6)^2 + (y - 4)^2 = 56 \\ \end{aligned} \][/tex]