Answer :
To determine the equation that represents the revenue of the fitness center after [tex]\( x \)[/tex] price increases of [tex]\( \$5 \)[/tex], let's break it down step by step.
1. Understand the initial conditions:
- Initial number of members: [tex]\( 320 \)[/tex]
- Initial membership fee per member: [tex]\( \$45 \)[/tex]
2. Determine the effects of each price increase:
- Each [tex]\( \$5 \)[/tex] increase causes 10 members to leave the fitness center.
3. Generalize the variables:
- Let [tex]\( x \)[/tex] be the number of [tex]\( \$5 \)[/tex] increases.
4. Updated membership fee:
- If the original fee was [tex]\( \$45 \)[/tex], and each increase is [tex]\( \$5 \)[/tex], after [tex]\( x \)[/tex] increases, the new fee will be:
[tex]\[ \text{New fee} = 45 + 5x \][/tex]
5. Updated number of members:
- If 10 members leave for each [tex]\( \$5 \)[/tex] increase, after [tex]\( x \)[/tex] increases, the remaining number of members will be:
[tex]\[ \text{New number of members} = 320 - 10x \][/tex]
6. Revenue equation:
- Revenue is calculated by multiplying the number of members by the membership fee. Therefore, the revenue [tex]\( y \)[/tex] after [tex]\( x \)[/tex] increases is:
[tex]\[ y = (\text{New number of members}) \times (\text{New fee}) \][/tex]
Substituting the values we determined:
[tex]\[ y = (320 - 10x) \times (45 + 5x) \][/tex]
7. Expand the equation:
- To find our correct option, we need to expand and simplify this equation:
[tex]\[ y = (320 - 10x)(45 + 5x) \][/tex]
[tex]\[ y = 320 \cdot 45 + 320 \cdot 5x - 10x \cdot 45 - 10x \cdot 5x \][/tex]
[tex]\[ y = 14400 + 1600x - 450x - 50x^2 \][/tex]
[tex]\[ y = 14400 + 1150x - 50x^2 \][/tex]
Rearranging the terms, we get:
[tex]\[ y = -50x^2 + 1150x + 14400 \][/tex]
Therefore, the correct answer is:
B. [tex]\( y = -50x^2 + 1150x + 14400 \)[/tex]
1. Understand the initial conditions:
- Initial number of members: [tex]\( 320 \)[/tex]
- Initial membership fee per member: [tex]\( \$45 \)[/tex]
2. Determine the effects of each price increase:
- Each [tex]\( \$5 \)[/tex] increase causes 10 members to leave the fitness center.
3. Generalize the variables:
- Let [tex]\( x \)[/tex] be the number of [tex]\( \$5 \)[/tex] increases.
4. Updated membership fee:
- If the original fee was [tex]\( \$45 \)[/tex], and each increase is [tex]\( \$5 \)[/tex], after [tex]\( x \)[/tex] increases, the new fee will be:
[tex]\[ \text{New fee} = 45 + 5x \][/tex]
5. Updated number of members:
- If 10 members leave for each [tex]\( \$5 \)[/tex] increase, after [tex]\( x \)[/tex] increases, the remaining number of members will be:
[tex]\[ \text{New number of members} = 320 - 10x \][/tex]
6. Revenue equation:
- Revenue is calculated by multiplying the number of members by the membership fee. Therefore, the revenue [tex]\( y \)[/tex] after [tex]\( x \)[/tex] increases is:
[tex]\[ y = (\text{New number of members}) \times (\text{New fee}) \][/tex]
Substituting the values we determined:
[tex]\[ y = (320 - 10x) \times (45 + 5x) \][/tex]
7. Expand the equation:
- To find our correct option, we need to expand and simplify this equation:
[tex]\[ y = (320 - 10x)(45 + 5x) \][/tex]
[tex]\[ y = 320 \cdot 45 + 320 \cdot 5x - 10x \cdot 45 - 10x \cdot 5x \][/tex]
[tex]\[ y = 14400 + 1600x - 450x - 50x^2 \][/tex]
[tex]\[ y = 14400 + 1150x - 50x^2 \][/tex]
Rearranging the terms, we get:
[tex]\[ y = -50x^2 + 1150x + 14400 \][/tex]
Therefore, the correct answer is:
B. [tex]\( y = -50x^2 + 1150x + 14400 \)[/tex]