The graph of a quadratic function is represented by the table.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
6 & -2 \\
\hline
7 & 4 \\
\hline
8 & 6 \\
\hline
9 & 4 \\
\hline
10 & -2 \\
\hline
\end{tabular}
\][/tex]

What is the equation of the function in vertex form?

Substitute numerical values for [tex]$a$[/tex], [tex]$h$[/tex], and [tex]$k$[/tex].

[tex]\[ t(x) = a(x - h)^2 + k \][/tex]



Answer :

Let's determine the equation of the quadratic function in vertex form [tex]\( t(x) = a(x-h)^2 + k \)[/tex] using the given data points.

### Step-by-Step Solution:

1. Identify the Given Points:
The points given are:
[tex]\[ (6, -2), (7, 4), (8, 6), (9, 4), (10, -2) \][/tex]

2. Fit a Quadratic Function:
For a quadratic function, the general form is [tex]\( f(x) = ax^2 + bx + c \)[/tex].

3. Vertex Form of a Quadratic Function:
The vertex form of a quadratic function is given by:
[tex]\[ t(x) = a(x-h)^2 + k \][/tex]
where [tex]\( (h, k) \)[/tex] is the vertex of the parabola.

4. Convert Coefficients to Vertex Form:
From the analysis, we determine the coefficients of the quadratic function that fits the points:
[tex]\[ a = -2.0, \quad h = 8.0 \quad (\text{approximately 7.999999999999996}), \quad k = 6.0 \quad (\text{approximately 5.999999999999943}) \][/tex]

5. Substitute the Values:
Using the values of [tex]\( a \)[/tex], [tex]\( h \)[/tex], and [tex]\( k \)[/tex], we can directly write the equation in vertex form:
[tex]\[ t(x) = -2(x - 8)^2 + 6 \][/tex]

### Final Equation:

The equation of the function in vertex form is:
[tex]\[ t(x) = -2(x - 8)^2 + 6 \][/tex]

Thus, we have successfully determined the quadratic function's equation in its vertex form, given the data points in the table.