Answer :
To determine the numbers in the domain of the relation [tex]\( R = \{(-3, -2), (-3, 0), (-1, 2), (1, 2)\} \)[/tex], we need to identify all distinct first elements from the ordered pairs in the set. These first elements represent the domain of the relation.
Let's examine each ordered pair:
- For the pair [tex]\((-3, -2)\)[/tex], the first element is [tex]\(-3\)[/tex].
- For the pair [tex]\((-3, 0)\)[/tex], the first element is [tex]\(-3\)[/tex].
- For the pair [tex]\((-1, 2)\)[/tex], the first element is [tex]\(-1\)[/tex].
- For the pair [tex]\((1, 2)\)[/tex], the first element is [tex]\(1\)[/tex].
Now, let's collect these unique first elements:
- [tex]\(-3\)[/tex] (appears in the pairs [tex]\((-3, -2)\)[/tex] and [tex]\((-3, 0)\)[/tex])
- [tex]\(-1\)[/tex] (appears in the pair [tex]\((-1, 2)\)[/tex])
- [tex]\(1\)[/tex] (appears in the pair [tex]\((1, 2)\)[/tex])
The domain of the relation [tex]\( R \)[/tex] consists of the distinct elements [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], and [tex]\(1\)[/tex].
Hence, the numbers in the domain are:
- [tex]\(-3\)[/tex]
- [tex]\(-1\)[/tex]
- [tex]\(1\)[/tex]
Let's examine each ordered pair:
- For the pair [tex]\((-3, -2)\)[/tex], the first element is [tex]\(-3\)[/tex].
- For the pair [tex]\((-3, 0)\)[/tex], the first element is [tex]\(-3\)[/tex].
- For the pair [tex]\((-1, 2)\)[/tex], the first element is [tex]\(-1\)[/tex].
- For the pair [tex]\((1, 2)\)[/tex], the first element is [tex]\(1\)[/tex].
Now, let's collect these unique first elements:
- [tex]\(-3\)[/tex] (appears in the pairs [tex]\((-3, -2)\)[/tex] and [tex]\((-3, 0)\)[/tex])
- [tex]\(-1\)[/tex] (appears in the pair [tex]\((-1, 2)\)[/tex])
- [tex]\(1\)[/tex] (appears in the pair [tex]\((1, 2)\)[/tex])
The domain of the relation [tex]\( R \)[/tex] consists of the distinct elements [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], and [tex]\(1\)[/tex].
Hence, the numbers in the domain are:
- [tex]\(-3\)[/tex]
- [tex]\(-1\)[/tex]
- [tex]\(1\)[/tex]