Type the correct answer in each box. Use numerals instead of words.

Consider this quadratic equation:

[tex]\[ x^2 + 2x + 7 = 21 \][/tex]

The number of positive solutions to this equation is [tex]\(\square\)[/tex].

The approximate value of the greatest solution to the equation, rounded to the nearest hundredth, is [tex]\(\square\)[/tex].



Answer :

To solve the quadratic equation [tex]\( x^2 + 2x + 7 = 21 \)[/tex]:

1. Rearrange the equation: Move all terms to one side to set the equation to zero.
[tex]\[ x^2 + 2x + 7 - 21 = 0 \rightarrow x^2 + 2x - 14 = 0 \][/tex]

2. Solve the quadratic equation using the quadratic formula [tex]\( x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -14 \)[/tex]:
[tex]\[ x = \frac{{-2 \pm \sqrt{{2^2 - 4 \cdot 1 \cdot (-14)}}}}{2 \cdot 1} = \frac{{-2 \pm \sqrt{{4 + 56}}}}{2} = \frac{{-2 \pm \sqrt{{60}}}}{2} \][/tex]

3. Simplify the solutions:
[tex]\[ x = \frac{{-2 \pm \sqrt{60}}}{2} = \frac{{-2 \pm 2\sqrt{15}}}{2} = -1 \pm \sqrt{15} \][/tex]

4. Identify the positive solution: Among the solutions [tex]\( x = -1 + \sqrt{15} \)[/tex] and [tex]\( x = -1 - \sqrt{15} \)[/tex], only [tex]\( x = -1 + \sqrt{15} \)[/tex] is positive.

5. Count the number of positive solutions: There is only 1 positive solution.

6. Approximate the greatest positive solution: Calculate and approximate to the nearest hundredth.
[tex]\[ -1 + \sqrt{15} \approx -1 + 3.872 = 2.872 \][/tex]
Rounded to the nearest hundredth, the value is 2.87.

Therefore:
- The number of positive solutions is [tex]\( \boxed{1} \)[/tex].
- The approximate value of the greatest solution to the equation, rounded to the nearest hundredth, is [tex]\( \boxed{2.87} \)[/tex].