Select the correct answer.

Consider this quadratic equation:
[tex]\[ 2x^2 - 1 = 3x + 4 \][/tex]

Which equation correctly applies the quadratic formula?

A. [tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-5)}}{2} \][/tex]
B. [tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-5)}}{2} \][/tex]
C. [tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - (2)(-5)}}{2} \][/tex]
D. [tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-5)}}{2(2)} \][/tex]



Answer :

To solve for [tex]\( x \)[/tex] in the quadratic equation [tex]\( 2x^2 - 1 = 3x + 4 \)[/tex], follow these steps:

1. Rewrite the equation in standard form: A quadratic equation must be in the form [tex]\( ax^2 + bx + c = 0 \)[/tex].
[tex]\[ 2x^2 - 1 - 3x - 4 = 0 \][/tex]
Simplify to get:
[tex]\[ 2x^2 - 3x - 5 = 0 \][/tex]

2. Identify coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ a = 2, \quad b = -3, \quad c = -5 \][/tex]

3. Apply the quadratic formula: The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

4. Substitute the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the formula:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-5)}}{2 \cdot 2} \][/tex]

So, the correctly applied quadratic formula for this equation is:
[tex]\[ \boxed{x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(-5)}}{2(2)}} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]