Answer :
To find the domain and range for the relations [tex]\( R \)[/tex] and [tex]\( Q \)[/tex], we will extract this information step-by-step.
### Relation [tex]\( R \)[/tex]
Given table for the relation [tex]\( R \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -3 & 5 \\ \hline -1 & 2 \\ \hline 1 & -1 \\ \hline -1 & 4 \\ \hline \end{tabular} \][/tex]
#### Domain of [tex]\( R \)[/tex]
The domain is the set of all possible [tex]\( x \)[/tex]-values in the relation. From the table, the [tex]\( x \)[/tex]-values are:
-3, -1, 1, -1
Since the domain is a set, we eliminate duplicates. Therefore, the domain of [tex]\( R \)[/tex] is:
[tex]\[ \text{Domain of } R = \{-3, -1, 1\} \][/tex]
#### Range of [tex]\( R \)[/tex]
The range is the set of all possible [tex]\( y \)[/tex]-values in the relation. From the table, the [tex]\( y \)[/tex]-values are:
5, 2, -1, 4
Eliminating duplicates, we get:
[tex]\[ \text{Range of } R = \{5, 2, -1, 4\} \][/tex]
### Relation [tex]\( Q \)[/tex]
Given ordered pairs for the relation [tex]\( Q \)[/tex]:
[tex]\[ Q = \{(-2, 4), (0, 2), (-1, 3), (4, -2)\} \][/tex]
#### Domain of [tex]\( Q \)[/tex]
The domain is the set of all possible [tex]\( x \)[/tex]-values in the relation. From the ordered pairs, the [tex]\( x \)[/tex]-values are:
-2, 0, -1, 4
Hence, the domain of [tex]\( Q \)[/tex] is:
[tex]\[ \text{Domain of } Q = \{-2, 0, -1, 4\} \][/tex]
#### Range of [tex]\( Q \)[/tex]
The range is the set of all possible [tex]\( y \)[/tex]-values in the relation. From the ordered pairs, the [tex]\( y \)[/tex]-values are:
4, 2, 3, -2
Thus, the range of [tex]\( Q \)[/tex] is:
[tex]\[ \text{Range of } Q = \{4, 2, 3, -2\} \][/tex]
### Final Results
[tex]\[ \text{Domain of } R = \{-3, -1, 1\} \][/tex]
[tex]\[ \text{Range of } R = \{5, 2, -1, 4\} \][/tex]
[tex]\[ \text{Domain of } Q = \{-2, 0, -1, 4\} \][/tex]
[tex]\[ \text{Range of } Q = \{4, 2, 3, -2\} \][/tex]
### Relation [tex]\( R \)[/tex]
Given table for the relation [tex]\( R \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -3 & 5 \\ \hline -1 & 2 \\ \hline 1 & -1 \\ \hline -1 & 4 \\ \hline \end{tabular} \][/tex]
#### Domain of [tex]\( R \)[/tex]
The domain is the set of all possible [tex]\( x \)[/tex]-values in the relation. From the table, the [tex]\( x \)[/tex]-values are:
-3, -1, 1, -1
Since the domain is a set, we eliminate duplicates. Therefore, the domain of [tex]\( R \)[/tex] is:
[tex]\[ \text{Domain of } R = \{-3, -1, 1\} \][/tex]
#### Range of [tex]\( R \)[/tex]
The range is the set of all possible [tex]\( y \)[/tex]-values in the relation. From the table, the [tex]\( y \)[/tex]-values are:
5, 2, -1, 4
Eliminating duplicates, we get:
[tex]\[ \text{Range of } R = \{5, 2, -1, 4\} \][/tex]
### Relation [tex]\( Q \)[/tex]
Given ordered pairs for the relation [tex]\( Q \)[/tex]:
[tex]\[ Q = \{(-2, 4), (0, 2), (-1, 3), (4, -2)\} \][/tex]
#### Domain of [tex]\( Q \)[/tex]
The domain is the set of all possible [tex]\( x \)[/tex]-values in the relation. From the ordered pairs, the [tex]\( x \)[/tex]-values are:
-2, 0, -1, 4
Hence, the domain of [tex]\( Q \)[/tex] is:
[tex]\[ \text{Domain of } Q = \{-2, 0, -1, 4\} \][/tex]
#### Range of [tex]\( Q \)[/tex]
The range is the set of all possible [tex]\( y \)[/tex]-values in the relation. From the ordered pairs, the [tex]\( y \)[/tex]-values are:
4, 2, 3, -2
Thus, the range of [tex]\( Q \)[/tex] is:
[tex]\[ \text{Range of } Q = \{4, 2, 3, -2\} \][/tex]
### Final Results
[tex]\[ \text{Domain of } R = \{-3, -1, 1\} \][/tex]
[tex]\[ \text{Range of } R = \{5, 2, -1, 4\} \][/tex]
[tex]\[ \text{Domain of } Q = \{-2, 0, -1, 4\} \][/tex]
[tex]\[ \text{Range of } Q = \{4, 2, 3, -2\} \][/tex]