Complete the steps to simplify [tex]\left(y^{\frac{4}{3}} \cdot y^{\frac{2}{3}}\right)^{-\frac{1}{2}}[/tex].

Apply the product of powers property to the expression inside the parentheses, then choose the equivalent expression.

A. [tex]\left(y^2\right)^{-\frac{1}{2}}[/tex]
B. [tex]\left(y^{\frac{8}{3}}\right)^{-\frac{1}{2}}[/tex]



Answer :

Sure! Let's go through the steps to simplify the expression [tex]\(\left(y^{\frac{4}{3}} \cdot y^{\frac{2}{3}}\right)^{-\frac{1}{2}}\)[/tex] step-by-step.

1. Apply the Product of Powers Property:
The product of powers property states that [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]. So, we first combine the exponents inside the parentheses:
[tex]\[ y^{\frac{4}{3}} \cdot y^{\frac{2}{3}} = y^{\left(\frac{4}{3} + \frac{2}{3}\right)} \][/tex]

2. Sum the exponents:
Now, add [tex]\(\frac{4}{3}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex]:
[tex]\[ \frac{4}{3} + \frac{2}{3} = \frac{6}{3} = 2 \][/tex]
So, the expression inside the parentheses simplifies to:
[tex]\[ y^2 \][/tex]

3. Apply the Power of a Power Property:
Now we need to apply the exponent [tex]\(-\frac{1}{2}\)[/tex] to the simplified expression [tex]\(y^2\)[/tex]:
[tex]\[ \left(y^2\right)^{-\frac{1}{2}} \][/tex]

4. Simplify the Exponent:
The power of a power property states [tex]\((a^m)^n = a^{mn}\)[/tex], so we multiply the exponents:
[tex]\[ y^{2 \cdot \left(-\frac{1}{2}\right)} = y^{-1} \][/tex]

Therefore, the expression [tex]\(\left(y^{\frac{4}{3}} \cdot y^{\frac{2}{3}}\right)^{-\frac{1}{2}}\)[/tex] simplifies to [tex]\( y^{-1} \)[/tex].