Solve the inequality

[tex]\frac{-x}{7} + 4 \geq 3x[/tex]

A. [tex]x \leq \frac{14}{11}[/tex]
B. [tex]x \leq \frac{2}{5}[/tex]
C. [tex]x \geq -1[/tex]
D. [tex]x \leq \frac{2}{1}[/tex]



Answer :

To solve the inequality [tex]\(\frac{-x}{7} + 4 \geq 3x\)[/tex], follow these steps:

1. Start with the given inequality:
[tex]\[ \frac{-x}{7} + 4 \geq 3x \][/tex]

2. Eliminate the fraction by multiplying both sides of the inequality by 7:
[tex]\[ 7 \left(\frac{-x}{7} + 4\right) \geq 7 \cdot 3x \][/tex]

3. Simplify the resulting expression:
[tex]\[ -x + 28 \geq 21x \][/tex]

4. Collect like terms by adding [tex]\(x\)[/tex] to both sides:
[tex]\[ 28 \geq 21x + x \][/tex]
[tex]\[ 28 \geq 22x \][/tex]

5. Solve for [tex]\(x\)[/tex] by dividing both sides by 22:
[tex]\[ \frac{28}{22} \geq x \][/tex]
[tex]\[ x \leq \frac{28}{22} \][/tex]

6. Simplify the fraction:
[tex]\[ x \leq \frac{14}{11} \][/tex]

Thus, the inequality [tex]\(\frac{-x}{7} + 4 \geq 3x\)[/tex] simplifies to [tex]\(x \leq \frac{14}{11}\)[/tex].

So, the correct answer is:
A. [tex]\(x \leq \frac{14}{11}\)[/tex]