Given:
[tex]\[ y = \frac{Ax + B}{C} \][/tex]

If [tex]\( y = 10.7 \)[/tex], [tex]\( x = 3.03 \)[/tex], [tex]\( B = 5.98 \)[/tex], and [tex]\( C = 8.94 \)[/tex], what is [tex]\( A \)[/tex]?



Answer :

To solve for [tex]\( A \)[/tex] given the equation [tex]\( y = \frac{Ax + B}{C} \)[/tex] and the known values [tex]\( y = 10.7 \)[/tex], [tex]\( x = 3.03 \)[/tex], [tex]\( B = 5.98 \)[/tex], and [tex]\( C = 8.94 \)[/tex], follow these steps:

1. Rewrite the given equation:
[tex]\[ y = \frac{Ax + B}{C} \][/tex]

2. Isolate [tex]\( A \)[/tex] by first multiplying both sides of the equation by [tex]\( C \)[/tex]:
[tex]\[ y \cdot C = Ax + B \][/tex]

3. Substitute the known values for [tex]\( y \)[/tex] and [tex]\( C \)[/tex] into the equation:
[tex]\[ 10.7 \cdot 8.94 = Ax + B \][/tex]

4. Calculate the left-hand side of the equation:
[tex]\[ 10.7 \cdot 8.94 = 95.418 \][/tex]
So the equation becomes:
[tex]\[ 95.418 = Ax + B \][/tex]

5. Subtract [tex]\( B \)[/tex] from both sides to isolate [tex]\( Ax \)[/tex]:
[tex]\[ 95.418 - 5.98 = Ax \][/tex]

6. Calculate the subtraction:
[tex]\[ 95.418 - 5.98 = 89.438 \][/tex]
So now the equation is:
[tex]\[ 89.438 = Ax \][/tex]

7. Finally, divide both sides by [tex]\( x \)[/tex] to solve for [tex]\( A \)[/tex]:
[tex]\[ A = \frac{89.438}{3.03} \][/tex]

8. Calculate the division:
[tex]\[ A = 29.59669966996699 \][/tex]

So, the value of [tex]\( A \)[/tex] is [tex]\( 29.59669966996699 \)[/tex].