Drag each step and justification to the correct location on the table. Each step and justification can be used more than once, but not all steps and justifications will be used.
Order each step and justification that is needed to solve the equation below.
[tex]\[
\begin{array}{l}
\frac{2}{3} y + 15 = 9 \\
\qquad \frac{2}{3} y \cdot \frac{3}{2} = 6 \cdot \frac{3}{2} \quad \frac{2}{3} y \cdot \frac{3}{2} = -6 \cdot \frac{3}{2} \quad \frac{2}{3} y = 6 \quad y = -9
\end{array}
\][/tex]
Multiplication property of equality \quad [tex]\(\frac{2}{3} y = -6\)[/tex] \quad [tex]\(y = 9\)[/tex] \quad Subtraction property of equality
\begin{tabular}{|c|c|}
\hline
Steps & Justifications \\
\hline
[tex]\(\frac{2}{3} y + 15 = 9\)[/tex] & Given \\
\hline
[tex]\(\frac{2}{3} y + 15 - 15 = 9 - 15\)[/tex] & Subtraction property of equality \\
\hline
[tex]\(\frac{2}{3} y = -6\)[/tex] & Simplification \\
\hline
[tex]\(\frac{2}{3} y \cdot \frac{3}{2} = -6 \cdot \frac{3}{2}\)[/tex] & Multiplication property of equality \\
\hline
[tex]\(y = -9\)[/tex] & Simplification \\
\hline
\end{tabular}