Task 2:
Find the solution of the following system of equations using the Gaussian elimination method and show the steps.

[tex]\[
\begin{array}{l}
x - y + z = 4 \\
5x - y + z = 6 \\
3x - y + 5z = 5
\end{array}
\][/tex]



Answer :

Sure, let's solve the system of equations using the Gaussian elimination method step-by-step. The system of equations is:

[tex]\[ \begin{array}{l} x - y + z = 4 \\ 5x - y + z = 6 \\ 3x - y + 5z = 5 \end{array} \][/tex]

1. Form the augmented matrix:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 5 & -1 & 1 & 6 \\ 3 & -1 & 5 & 5 \end{array}\right] \][/tex]

2. Eliminate the first element of the second and third rows:

- For the second row, we subtract [tex]\( 5 \)[/tex] times the first row from the second row:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 5 & -1 & 1 & 6 \\ 3 & -1 & 5 & 5 \end{array}\right] \][/tex]

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 5 - 5 \cdot 1 & -1 - 5 \cdot (-1) & 1 - 5 \cdot 1 & 6 - 5 \cdot 4 \\ 3 & -1 & 5 & 5 \end{array}\right] \][/tex]

Which simplifies to:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 0 & 4 & -4 & -14 \\ 3 & -1 & 5 & 5 \end{array}\right] \][/tex]

- For the third row, we subtract [tex]\( 3 \)[/tex] times the first row from the third row:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 0 & 4 & -4 & -14 \\ 3 - 3 \cdot 1 & -1 - 3 \cdot (-1) & 5 - 3 \cdot 1 & 5 - 3 \cdot 4 \end{array}\right] \][/tex]

Which simplifies to:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 0 & 4 & -4 & -14 \\ 0 & 2 & 2 & -7 \end{array}\right] \][/tex]

3. Eliminate the second element of the third row:

- For the third row, we subtract [tex]\( \frac{2}{4} \)[/tex] (or 0.5) times the second row from the third row:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 0 & 4 & -4 & -14 \\ 0 & 2 & 2 & -7 \end{array}\right] \][/tex]

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 0 & 4 & -4 & -14 \\ 0 & 2 - 0.5 \cdot 4 & 2 - 0.5 \cdot (-4) & -7 - 0.5 \cdot (-14) \end{array}\right] \][/tex]

Which simplifies to:

[tex]\[ \left[\begin{array}{ccc|c} 1 & -1 & 1 & 4 \\ 0 & 4 & -4 & -14 \\ 0 & 0 & 4 & 0 \end{array}\right] \][/tex]

4. Back-substitution to find the solutions:

- From row 3, solve for [tex]\( z \)[/tex]:

[tex]\[ 4z = 0 \implies z = 0 \][/tex]

- Substitute [tex]\( z = 0 \)[/tex] into row 2 to solve for [tex]\( y \)[/tex]:

[tex]\[ 4y - 4(0) = -14 \implies 4y = -14 \implies y = -3.5 \][/tex]

- Substitute [tex]\( y = -3.5 \)[/tex] and [tex]\( z = 0 \)[/tex] into row 1 to solve for [tex]\( x \)[/tex]:

[tex]\[ x - (-3.5) + 0 = 4 \implies x + 3.5 = 4 \implies x = 0.5 \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ \boxed{(x, y, z) = \left(0.5, -3.5, 0\right)} \][/tex]