Type the correct answer in each box. Use numerals instead of words.

A race car is driven by a professional driver at [tex]99 \frac{\text{miles}}{\text{hour}}[/tex]. What is this speed in [tex]\frac{\text{kilometers}}{\text{hour}}[/tex] and [tex]\frac{\text{kilometers}}{\text{minute}}[/tex]?

1 mile = 1.61 kilometers
1 hour = 60 minutes

Round your answers to the nearest tenth.

The speed is equivalent to [tex]\square \frac{\text{kilometers}}{\text{hour}}[/tex], or [tex]\square \frac{\text{kilometers}}{\text{minute}}[/tex].



Answer :

To determine the speed of 99 miles per hour in both kilometers per hour and kilometers per minute, follow these steps:

1. Convert miles per hour to kilometers per hour:

Given:
- Speed: 99 miles per hour
- Conversion factor: 1 mile = 1.61 kilometers

Calculation:
[tex]\[ \text{Speed in } \frac{\text{kilometers}}{\text{hour}} = 99 \times 1.61 = 159.4 \frac{\text{kilometers}}{\text{hour}} \][/tex]

2. Convert kilometers per hour to kilometers per minute:

Given:
- 1 hour = 60 minutes

Calculation:
[tex]\[ \text{Speed in } \frac{\text{kilometers}}{\text{minute}} = \frac{159.4}{60} = 2.7 \frac{\text{kilometers}}{\text{minute}} \][/tex]

Therefore, the speed is equivalent to:
- [tex]\(159.4 \frac{\text{kilometers}}{\text{hour}}\)[/tex]
- [tex]\(2.7 \frac{\text{kilometers}}{\text{minute}}\)[/tex]

The complete answer is:
The speed is equivalent to [tex]\( \boxed{159.4} \frac{\text{kilometers}}{\text{hour}} \)[/tex], or [tex]\( \boxed{2.7} \frac{\text{kilometers}}{\text{minute}} \)[/tex].