What is the quadratic regression equation that fits these data?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-4 & 40 \\
\hline
-3 & 28 \\
\hline
-2 & 10 \\
\hline
-1 & 8 \\
\hline
0 & 7 \\
\hline
1 & 10 \\
\hline
2 & 16 \\
\hline
3 & 26 \\
\hline
4 & 40 \\
\hline
\end{tabular}
\][/tex]

A. [tex]y = 0.82x^2 + 0.78x + 7.23[/tex]
B. [tex]y = 1.64x^2 + 1.24x + 8.08[/tex]
C. [tex]y = 2.13x^2 + 0.13x + 6.39[/tex]
D. [tex]y = 16.76 \cdot 1.02^x[/tex]



Answer :

To find the quadratic regression equation that fits the given data points, we need to determine the quadratic polynomial [tex]\( y = ax^2 + bx + c \)[/tex] that best represents the relationship between the independent variable [tex]\( x \)[/tex] and the dependent variable [tex]\( y \)[/tex].

Here are the steps to derive the quadratic regression equation:

1. Gather Data: Collect the data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -4 & 40 \\ \hline -3 & 28 \\ \hline -2 & 10 \\ \hline -1 & 8 \\ \hline 0 & 7 \\ \hline 1 & 10 \\ \hline 2 & 16 \\ \hline 3 & 26 \\ \hline 4 & 40 \\ \hline \end{array} \][/tex]

2. Set Up the Quadratic Regression: The quadratic regression model is [tex]\( y = ax^2 + bx + c \)[/tex].

3. Calculate the Coefficients: Based on statistical computations (using methods such as least squares), we determine the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex].

The computed coefficients for this problem are:
[tex]\[ a = 2.13 \][/tex]
[tex]\[ b = 0.13 \][/tex]
[tex]\[ c = 6.39 \][/tex]

4. Construct the Equation: Plug the coefficients into the quadratic equation:
[tex]\[ y = 2.13x^2 + 0.13x + 6.39 \][/tex]

Therefore, the quadratic regression equation that fits the given data points is:
[tex]\[ y = 2.13x^2 + 0.13x + 6.39 \][/tex]

Looking at the answer choices provided:
A. [tex]\( y = 0.82x^2 + 0.78x + 7.23 \)[/tex]
B. [tex]\( y = 1.64x^2 + 1.24x + 8.08 \)[/tex]
C. [tex]\( y = 2.13x^2 + 0.13x + 6.39 \)[/tex]
D. [tex]\( y = 16.76 \cdot 1.02^x \)[/tex]

The correct answer is:

[tex]\[ \boxed{C. \, y = 2.13x^2 + 0.13x + 6.39} \][/tex]