Select the correct answer.

Which of these tables represents a function?

[tex]\[
\begin{array}{c|c|c|c|c|c|c|c}
x & y & x & y & x & y & x & y \\
\hline
-1 & 15 & 0 & 4 & 4 & 0 & 6 & -2 \\
-2 & 6 & 6 & 15 & -1 & -2 & 4 & 0 \\
0 & 15 & 0 & 6 & 6 & -2 & 15 & -1 \\
4 & 6 & -2 & -1 & 6 & 15 & 4 & 3 \\
\end{array}
\][/tex]

A. [tex]$W$[/tex]

B. [tex]$X$[/tex]

C. [tex]$Y$[/tex]

D. [tex]$Z$[/tex]



Answer :

To determine which table represents a function, we need to check if each input [tex]\(x\)[/tex] has exactly one corresponding output [tex]\(y\)[/tex]. A function assigns only one output to each input.

Let's evaluate each table one by one:

1. Table [tex]\(W\) \[ \begin{array}{c|c} x & y \\ \hline -1 & 15 \\ -2 & 6 \\ 0 & 15 \\ 4 & 6 \\ \end{array} \] - \(x = -1 \rightarrow y = 15\)[/tex]
- [tex]\(x = -2 \rightarrow y = 6\)[/tex]
- [tex]\(x = 0 \rightarrow y = 15\)[/tex]
- [tex]\(x = 4 \rightarrow y = 6\)[/tex]

In this table, each [tex]\(x\)[/tex] has a unique [tex]\(y\)[/tex] value. This represents a function.

2. Table [tex]\(X\) \[ \begin{array}{c|c} x & y \\ \hline 0 & 4 \\ 6 & 15 \\ 0 & 6 \\ -2 & -1 \\ \end{array} \] - \(x = 0 \rightarrow y = 4\)[/tex]
- [tex]\(x = 6 \rightarrow y = 15\)[/tex]
- [tex]\(x = 0 \rightarrow y = 6\)[/tex]
- [tex]\(x = -2 \rightarrow y = -1\)[/tex]

In this table, [tex]\(x = 0\)[/tex] corresponds to two different [tex]\(y\)[/tex] values (4 and 6). This does not represent a function.

3. Table [tex]\(Y\) \[ \begin{array}{c|c} x & y \\ \hline 4 & 0 \\ -1 & -2 \\ 6 & -2 \\ 6 & 15 \\ \end{array} \] - \(x = 4 \rightarrow y = 0\)[/tex]
- [tex]\(x = -1 \rightarrow y = -2\)[/tex]
- [tex]\(x = 6 \rightarrow y = -2\)[/tex]
- [tex]\(x = 6 \rightarrow y = 15\)[/tex]

In this table, [tex]\(x = 6\)[/tex] corresponds to two different [tex]\(y\)[/tex] values (-2 and 15). This does not represent a function.

4. Table [tex]\(Z\) \[ \begin{array}{c|c} x & y \\ \hline 6 & -2 \\ 4 & 0 \\ 15 & -1 \\ 4 & 3 \\ \end{array} \] - \(x = 6 \rightarrow y = -2\)[/tex]
- [tex]\(x = 4 \rightarrow y = 0\)[/tex]
- [tex]\(x = 15 \rightarrow y = -1\)[/tex]
- [tex]\(x = 4 \rightarrow y = 3\)[/tex]

In this table, [tex]\(x = 4\)[/tex] corresponds to two different [tex]\(y\)[/tex] values (0 and 3). This does not represent a function.

From the evaluation, only Table [tex]\(W\)[/tex] meets the requirement that each input [tex]\(x\)[/tex] has exactly one corresponding output [tex]\(y\)[/tex].

Therefore, the correct answer is:

A. [tex]\(W\)[/tex]