Select the correct answer.

Given that a function, [tex]h[/tex], has a domain of [tex]-3 \leq x \leq 11[/tex] and a range of [tex]1 \leq h(x) \leq 25[/tex], and that [tex]h(8) = 19[/tex] and [tex]h(-2) = 2[/tex], select the statement that could be true for [tex]h[/tex].

A. [tex]h(8) = 21[/tex]

B. [tex]n(-3) = -1[/tex]

C. [tex]h(13) = 18[/tex]

D. [tex]n(2) = 16[/tex]



Answer :

To determine which statement could be true for the function [tex]\( h \)[/tex] given its domain and range, we need to evaluate each option based on the constraints provided:

The domain is [tex]\( -3 \leq x \leq 11 \)[/tex].

The range is [tex]\( 1 \leq h(x) \leq 25 \)[/tex].

Additionally, specific values given are:
[tex]\( h(8) = 19 \)[/tex]
[tex]\( h(-2) = 2 \)[/tex]

Now, let's analyze each option individually:

### Option A: [tex]\( h(8) = 21 \)[/tex]

We know that the function [tex]\( h(x) \)[/tex] is defined for [tex]\( -3 \leq x \leq 11 \)[/tex], and the specific value [tex]\( h(8) \)[/tex] is given as [tex]\( 19 \)[/tex]. Option A states [tex]\( h(8) = 21 \)[/tex].

Although [tex]\( 21 \)[/tex] is within the range [tex]\( 1 \leq h(x) \leq 25 \)[/tex], this contradicts the provided value [tex]\( h(8) = 19 \)[/tex]. Therefore, Option A cannot be true.

### Option B: [tex]\( h(-3) = -1 \)[/tex]

Option B states [tex]\( h(-3) = -1 \)[/tex].

First, -3 is within the domain [tex]\( -3 \leq x \leq 11 \)[/tex]. However, the value [tex]\( -1 \)[/tex] is not within the range [tex]\( 1 \leq h(x) \leq 25 \)[/tex]. Therefore, Option B cannot be true.

### Option C: [tex]\( h(13) = 18 \)[/tex]

Option C states [tex]\( h(13) = 18 \)[/tex].

First, [tex]\( 13 \)[/tex] is not within the domain [tex]\( -3 \leq x \leq 11 \)[/tex]. Therefore, [tex]\( h(13) \)[/tex] is undefined since it's outside the domain. No matter the value provided for [tex]\( h(13) \)[/tex], since [tex]\( x = 13 \)[/tex] is not defined in the domain, it cannot be true.

### Option D: [tex]\( h(2) = 16 \)[/tex]

Option D states [tex]\( h(2) = 16 \)[/tex].

First, 2 is within the domain [tex]\( -3 \leq x \leq 11 \)[/tex]. Additionally, the value [tex]\( 16 \)[/tex] is within the range [tex]\( 1 \leq h(x) \leq 25 \)[/tex]. Nothing about these values contradicts the given information. Therefore, Option D could be true.

#### Conclusion:

The valid options are:
[tex]\( A \)[/tex]
[tex]\( C \)[/tex]
[tex]\( D \)[/tex]

None of the domain or range constraints, as well as the defined function values [tex]\( h(8) = 19 \)[/tex] and [tex]\( h(-2) = 2 \)[/tex], are violated by Option D. Therefore, the correct answer is [tex]\( D \)[/tex].