Select the correct answer.

Given that a function, [tex]$h$[/tex], has a domain of [tex]$-3 \leq x \leq 11$[/tex] and a range of [tex]$1 \leq h(x) \leq 25$[/tex], and that [tex]$h(8)=19$[/tex] and [tex]$h(-2)=2$[/tex], select the statement that could be true for [tex]$h$[/tex].

A. [tex]$n(8)=21$[/tex]
B. [tex]$h(-3)=-1$[/tex]
C. [tex]$h(13)=18$[/tex]
D. [tex]$f(2)=16$[/tex]



Answer :

To determine which statement could be true for the function [tex]\( h \)[/tex], let's analyze each option given the information about the function's domain, range, and specific values.

### Information Given:
1. Domain of [tex]\( h \)[/tex]: [tex]\(-3 \leq x \leq 11\)[/tex]
2. Range of [tex]\( h \)[/tex]: [tex]\(1 \leq h(x) \leq 25\)[/tex]
3. Specific points: [tex]\( h(8) = 19 \)[/tex] and [tex]\( h(-2) = 2 \)[/tex]

### Analyzing Each Statement:

A. [tex]\( n(8) = 21 \)[/tex]

- This statement defines a function [tex]\( n \)[/tex], not [tex]\( h \)[/tex]. Since [tex]\( n \)[/tex] is not the function we are given, the statement is irrelevant to what we are analyzing.

B. [tex]\( h(-3) = -1 \)[/tex]

- The value [tex]\(-1\)[/tex] is outside the given range of the function [tex]\( h \)[/tex], which is [tex]\( 1 \leq h(x) \leq 25 \)[/tex]. Therefore, this statement is false.

C. [tex]\( h(13) = 18 \)[/tex]

- The value [tex]\( 13 \)[/tex] is outside the given domain of the function [tex]\( h \)[/tex], which is [tex]\(-3 \leq x \leq 11 \)[/tex]. Therefore, this statement cannot be true.

D. [tex]\( f(2) = 16 \)[/tex]

- This statement defines a function [tex]\( f \)[/tex], not [tex]\( h \)[/tex]. Since [tex]\( f \)[/tex] is not the function we are given, the statement is unrelated.

### Conclusion:
After analyzing each statement considering the given properties of the function [tex]\( h \)[/tex], none of the statements (A, B, C, or D) could be true for the function [tex]\( h \)[/tex].

Therefore, the answer is:
[tex]\[ 0 \][/tex]

None of the statements could be true.