Select the correct answer.

Which of the following is the inverse of [tex]f(x) = 3 - 14x[/tex]?

A. [tex]f^{-1}(x) = \frac{3 - x}{14}[/tex]
B. [tex]f^{-1}(x) = 14 + 3x[/tex]
C. [tex]f^{-1}(x) = \frac{14 + x}{3}[/tex]
D. [tex]f^{-1}(x) = -\frac{3}{14}x[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 3 - 14x \)[/tex], we need to follow these steps:

1. Rewrite the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = 3 - 14x \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = 3 - 14x \][/tex]
Subtract 3 from both sides:
[tex]\[ y - 3 = -14x \][/tex]
Divide both sides by -14:
[tex]\[ x = \frac{3 - y}{14} \][/tex]

3. Express the solution as the inverse function:
Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to denote the inverse function:
[tex]\[ f^{-1}(x) = \frac{3 - x}{14} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. \, f^{-1}(x) = \frac{3-x}{14}} \][/tex]