Select the correct answer.

Find the inverse of the function [tex]f[/tex].
[tex]\[f(x)=\frac{1}{3} x-2\][/tex]

A. [tex]f^{-1}(x)=3x+6[/tex]

B. [tex]f^{-1}(x)=3x-\frac{2}{3}[/tex]

C. [tex]f^{-1}(x)=\frac{1}{3}x+\frac{2}{3}[/tex]

D. [tex]f^{-1}(x)=3x+2[/tex]



Answer :

To determine the inverse of the function [tex]\( f(x) = \frac{1}{3}x - 2 \)[/tex], we need to follow these steps:

1. Express [tex]\( f(x) \)[/tex] as [tex]\( y \)[/tex]:
[tex]\[ y = \frac{1}{3}x - 2 \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] to find the inverse:
[tex]\[ x = \frac{1}{3}y - 2 \][/tex]

3. Solve for [tex]\( y \)[/tex]:
- First, add 2 to both sides:
[tex]\[ x + 2 = \frac{1}{3}y \][/tex]

- Then, multiply both sides by 3 to isolate [tex]\( y \)[/tex]:
[tex]\[ 3(x + 2) = y \][/tex]

4. Simplify the equation:
[tex]\[ y = 3(x + 2) \][/tex]

This gives us the inverse function:
[tex]\[ f^{-1}(x) = 3x + 6 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. \, f^{-1}(x) = 3x + 6} \][/tex]