Select the correct answer.

The table defines:
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & 0 & 2 & 4 \\
\hline
[tex]$y$[/tex] & -1 & 5 & 11 & 17 \\
\hline
\end{tabular}

Which table represents the inverse of the function defined above?

A.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -1 & 5 & 11 & 17 \\
\hline
[tex]$y$[/tex] & -2 & 0 & 2 & 4 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -1 & 5 & 11 & 17 \\
\hline
[tex]$y$[/tex] & 2 & 0 & -2 & -4 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & 0 & 2 & 4 \\
\hline
[tex]$y$[/tex] & 1 & -5 & -11 & -17 \\
\hline
\end{tabular}

D.
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & -2 & 0 & 2 & 4 \\
\hline
[tex]$y$[/tex] & 5 & 11 & 17 & 23 \\
\hline
\end{tabular}



Answer :

To determine which table represents the inverse of the given function, we need to switch the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] from the original table.

Given the original table:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 0 & 2 & 4 \\ \hline y & -1 & 5 & 11 & 17 \\ \hline \end{array} \][/tex]

The inverse table would switch [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -1 & 5 & 11 & 17 \\ \hline y & -2 & 0 & 2 & 4 \\ \hline \end{array} \][/tex]

Comparing this with the given options:

Option A:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -1 & 5 & 11 & 17 \\ \hline y & -2 & 0 & 2 & 4 \\ \hline \end{array} \][/tex]

This matches our inverse table exactly.

Option B:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -1 & 5 & 11 & 17 \\ \hline y & 2 & 0 & -2 & -4 \\ \hline \end{array} \][/tex]

The [tex]\( y \)[/tex] values do not match the inverse table we calculated.

Option C:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 0 & 2 & 4 \\ \hline y & 1 & -5 & -11 & -17 \\ \hline \end{array} \][/tex]

Neither the [tex]\( x \)[/tex] nor the [tex]\( y \)[/tex] values match our inverse table.

Option D:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 0 & 2 & 4 \\ \hline y & 5 & 11 & 17 & 23 \\ \hline \end{array} \][/tex]

Again, neither the [tex]\( x \)[/tex] nor the [tex]\( y \)[/tex] values match our inverse table.

Therefore, the correct table that represents the inverse of the given function is:

Option A:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -1 & 5 & 11 & 17 \\ \hline y & -2 & 0 & 2 & 4 \\ \hline \end{array} \][/tex]

So, the correct answer is 1.