Suppose [tex]f(x) = 2x^2 - 3x + 2[/tex]. Compute the following:

a. [tex]f(2) + f(4)[/tex]

b. [tex]f(2) - f(4)[/tex]



Answer :

Let's solve the given problem step by step. We have a function [tex]\( f(x) = 2x^2 - 3x + 2 \)[/tex] and we need to compute several expressions involving this function.

Step 1: Compute [tex]\( f(2) \)[/tex]

First, we substitute [tex]\( x = 2 \)[/tex] into the function:

[tex]\[ f(2) = 2(2)^2 - 3(2) + 2 \][/tex]

Calculate each term step by step:
[tex]\[ 2(2)^2 = 2 \cdot 4 = 8 \][/tex]
[tex]\[ -3(2) = -6 \][/tex]
[tex]\[ f(2) = 8 - 6 + 2 = 4 \][/tex]

So, [tex]\( f(2) = 4 \)[/tex].

Step 2: Compute [tex]\( f(4) \)[/tex]

Next, we substitute [tex]\( x = 4 \)[/tex] into the function:

[tex]\[ f(4) = 2(4)^2 - 3(4) + 2 \][/tex]

Calculate each term step by step:
[tex]\[ 2(4)^2 = 2 \cdot 16 = 32 \][/tex]
[tex]\[ -3(4) = -12 \][/tex]
[tex]\[ f(4) = 32 - 12 + 2 = 22 \][/tex]

So, [tex]\( f(4) = 22 \)[/tex].

Step 3: Compute [tex]\( f(2) + f(4) \)[/tex]

Now we add the values obtained from steps 1 and 2:

[tex]\[ f(2) + f(4) = 4 + 22 = 26 \][/tex]

So, [tex]\( f(2) + f(4) = 26 \)[/tex].

Step 4: Compute [tex]\( f(2) - f(4) \)[/tex]

Finally, we subtract the value of [tex]\( f(4) \)[/tex] from [tex]\( f(2) \)[/tex]:

[tex]\[ f(2) - f(4) = 4 - 22 = -18 \][/tex]

So, [tex]\( f(2) - f(4) = -18 \)[/tex].

Summary of Results

a. [tex]\( f(2) + f(4) = 26 \)[/tex]

b. [tex]\( f(2) - f(4) = -18 \)[/tex]