Answer :
Let's solve the given problem step by step. We have a function [tex]\( f(x) = 2x^2 - 3x + 2 \)[/tex] and we need to compute several expressions involving this function.
Step 1: Compute [tex]\( f(2) \)[/tex]
First, we substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = 2(2)^2 - 3(2) + 2 \][/tex]
Calculate each term step by step:
[tex]\[ 2(2)^2 = 2 \cdot 4 = 8 \][/tex]
[tex]\[ -3(2) = -6 \][/tex]
[tex]\[ f(2) = 8 - 6 + 2 = 4 \][/tex]
So, [tex]\( f(2) = 4 \)[/tex].
Step 2: Compute [tex]\( f(4) \)[/tex]
Next, we substitute [tex]\( x = 4 \)[/tex] into the function:
[tex]\[ f(4) = 2(4)^2 - 3(4) + 2 \][/tex]
Calculate each term step by step:
[tex]\[ 2(4)^2 = 2 \cdot 16 = 32 \][/tex]
[tex]\[ -3(4) = -12 \][/tex]
[tex]\[ f(4) = 32 - 12 + 2 = 22 \][/tex]
So, [tex]\( f(4) = 22 \)[/tex].
Step 3: Compute [tex]\( f(2) + f(4) \)[/tex]
Now we add the values obtained from steps 1 and 2:
[tex]\[ f(2) + f(4) = 4 + 22 = 26 \][/tex]
So, [tex]\( f(2) + f(4) = 26 \)[/tex].
Step 4: Compute [tex]\( f(2) - f(4) \)[/tex]
Finally, we subtract the value of [tex]\( f(4) \)[/tex] from [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) - f(4) = 4 - 22 = -18 \][/tex]
So, [tex]\( f(2) - f(4) = -18 \)[/tex].
Summary of Results
a. [tex]\( f(2) + f(4) = 26 \)[/tex]
b. [tex]\( f(2) - f(4) = -18 \)[/tex]
Step 1: Compute [tex]\( f(2) \)[/tex]
First, we substitute [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = 2(2)^2 - 3(2) + 2 \][/tex]
Calculate each term step by step:
[tex]\[ 2(2)^2 = 2 \cdot 4 = 8 \][/tex]
[tex]\[ -3(2) = -6 \][/tex]
[tex]\[ f(2) = 8 - 6 + 2 = 4 \][/tex]
So, [tex]\( f(2) = 4 \)[/tex].
Step 2: Compute [tex]\( f(4) \)[/tex]
Next, we substitute [tex]\( x = 4 \)[/tex] into the function:
[tex]\[ f(4) = 2(4)^2 - 3(4) + 2 \][/tex]
Calculate each term step by step:
[tex]\[ 2(4)^2 = 2 \cdot 16 = 32 \][/tex]
[tex]\[ -3(4) = -12 \][/tex]
[tex]\[ f(4) = 32 - 12 + 2 = 22 \][/tex]
So, [tex]\( f(4) = 22 \)[/tex].
Step 3: Compute [tex]\( f(2) + f(4) \)[/tex]
Now we add the values obtained from steps 1 and 2:
[tex]\[ f(2) + f(4) = 4 + 22 = 26 \][/tex]
So, [tex]\( f(2) + f(4) = 26 \)[/tex].
Step 4: Compute [tex]\( f(2) - f(4) \)[/tex]
Finally, we subtract the value of [tex]\( f(4) \)[/tex] from [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) - f(4) = 4 - 22 = -18 \][/tex]
So, [tex]\( f(2) - f(4) = -18 \)[/tex].
Summary of Results
a. [tex]\( f(2) + f(4) = 26 \)[/tex]
b. [tex]\( f(2) - f(4) = -18 \)[/tex]