Task 3:
Solve the following system of equations. Verify your answers algebraically and graphically.

[tex]
\begin{array}{c}
x + y = 4 \\
x^2 - 2xy - 3 = 0
\end{array}
[/tex]

Draw the graph and locate the points of intersection.



Answer :

Certainly! Let's solve the system of equations both algebraically and graphically.

### System of equations:
[tex]\[ \begin{cases} 1. \quad x + y = 4 \\ 2. \quad x^2 - 2xy - 3 = 0 \end{cases} \][/tex]

### Step-by-Step Algebraic Solution:

1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] from Equation 1:

From the first equation:
[tex]\[ y = 4 - x \][/tex]

2. Substitute [tex]\( y \)[/tex] in Equation 2:

Substitute [tex]\( y = 4 - x \)[/tex] into the second equation:
[tex]\[ x^2 - 2x(4 - x) - 3 = 0 \][/tex]

Simplify this equation:
[tex]\[ x^2 - 2x(4 - x) - 3 = x^2 - 8x + 2x^2 - 3 = 0 \][/tex]
[tex]\[ 3x^2 - 8x - 3 = 0 \][/tex]

3. Solve the quadratic equation:

The quadratic equation is:
[tex]\[ 3x^2 - 8x - 3 = 0 \][/tex]

Use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ a = 3, \quad b = -8, \quad c = -3 \][/tex]

[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \cdot 3 \cdot (-3)}}{2 \cdot 3} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 + 36}}{6} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{100}}{6} \][/tex]
[tex]\[ x = \frac{8 \pm 10}{6} \][/tex]

So, we get two solutions:
[tex]\[ x = \frac{8 + 10}{6} = 3 \quad \text{or} \quad x = \frac{8 - 10}{6} = -\frac{1}{3} \][/tex]

4. Find the corresponding [tex]\( y \)[/tex] values:

For [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 4 - 3 = 1 \][/tex]

For [tex]\( x = -\frac{1}{3} \)[/tex]:
[tex]\[ y = 4 - \left(-\frac{1}{3}\right) = 4 + \frac{1}{3} = \frac{13}{3} \][/tex]

Thus, the solutions are:
[tex]\((x, y) = (3, 1)\)[/tex] and [tex]\((x, y) = \left(-\frac{1}{3}, \frac{13}{3}\right)\)[/tex]

### Verification Algebraically:

- For [tex]\( (3, 1) \)[/tex]:
[tex]\[ 3 + 1 = 4 \quad \text{which satisfies the first equation} \][/tex]
[tex]\[ 3^2 - 2 \cdot 3 \cdot 1 - 3 = 9 - 6 - 3 = 0 \quad \text{which satisfies the second equation} \][/tex]

- For [tex]\( \left(-\frac{1}{3}, \frac{13}{3}\right) \)[/tex]:
[tex]\[ -\frac{1}{3} + \frac{13}{3} = \frac{12}{3} = 4 \quad \text{which satisfies the first equation} \][/tex]
[tex]\[ \left(-\frac{1}{3}\right)^2 - 2 \cdot \left(-\frac{1}{3}\right) \cdot \frac{13}{3} - 3 = \frac{1}{9} + \frac{26}{9} - 3 = \frac{1}{9} + \frac{26}{9} - \frac{27}{9} = 0 \quad \text{which satisfies the second equation} \][/tex]

### Graphical Solution:

1. Equation [tex]\( x + y = 4 \)[/tex]:

Rearrange to find [tex]\( y \)[/tex]:
[tex]\[ y = 4 - x \][/tex]

This is a linear equation, and its graph is a straight line.

2. Equation [tex]\( x^2 - 2xy - 3 = 0 \)[/tex]:

Rearrange to express [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x^2 - 3}{2x} \][/tex]

This is a non-linear equation and its graph is a hyperbola.

3. Plot these equations:

- The straight line [tex]\( y = 4 - x \)[/tex]
- The hyperbola [tex]\( y = \frac{x^2 - 3}{2x} \)[/tex]

4. Locate the points of intersection:

Graphically, the points where the line [tex]\( y = 4 - x \)[/tex] intersects the hyperbola [tex]\( y = \frac{x^2 - 3}{2x} \)[/tex] are the solutions to the system of equations. Specifically, the intersections are at points [tex]\((3, 1)\)[/tex] and [tex]\(\left(-\frac{1}{3}, \frac{13}{3}\right)\)[/tex].

### Final Answer:

The solutions to the system of equations are:

[tex]\[ \boxed{(3, 1) \text{ and } \left(-\frac{1}{3}, \frac{13}{3}\right)} \][/tex]