Match the number of integers in the range of functions in List-I with List-II.

List-I
P. [tex]\sin^{-1} x - \cos^{-1} x, x \in [-1, 1][/tex]

Q. [tex]\sin^{-1} x \cdot \cos^{-1} x, x \in [0, 1][/tex]

R. [tex]\frac{\sin^{-1} x}{\cos^{-1} x}, x \neq 1[/tex]

S. [tex]\frac{\cos^{-1} x}{\sin^{-1} x}, x \neq 0[/tex]

List-II
1. 1

2. 0

3. 6

4. Infinitely many

The correct option is:

A. [tex](P) \rightarrow (3); (Q) \rightarrow (2); (R) \rightarrow (4); (S) \rightarrow (4)[/tex]

B. [tex](P) \rightarrow (1); (Q) \rightarrow (1); (R) \rightarrow (3); (S) \rightarrow (4)[/tex]

C. [tex](P) \rightarrow (3); (Q) \rightarrow (1); (R) \rightarrow (4); (S) \rightarrow (4)[/tex]



Answer :

To solve this problem, we need to match each function from List-I with the number of integers in its range from List-II.

Let's analyze each function step-by-step:

### (P) [tex]\( \sin^{-1}x - \cos^{-1}x, x \in [-1,1] \)[/tex]

For [tex]\( \sin^{-1}x \)[/tex] and [tex]\( \cos^{-1}x \)[/tex] within the interval [tex]\( x \in [-1, 1] \)[/tex]:
- The function [tex]\( \sin^{-1} x \)[/tex] (arcsine) has a range of [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}] \)[/tex].
- The function [tex]\( \cos^{-1} x \)[/tex] (arccosine) has a range of [tex]\([0, \pi] \)[/tex].

Thus, the range of [tex]\( \sin^{-1}x - \cos^{-1} x \)[/tex] would be [tex]\([- \pi, \pi]\)[/tex]. The integers in this range are [tex]\(-3, -2, -1, 0, 1, 2\)[/tex], totaling 6 integers.

Therefore, [tex]\( (P) \rightarrow (3) \)[/tex].

### (Q) [tex]\( \sin^{-1} x \cdot \cos^{-1}x, x \in [0,1] \)[/tex]

In [tex]\( [0, 1] \)[/tex]:
- [tex]\(\sin^{-1} x\)[/tex] varies from 0 to [tex]\( \frac{\pi}{2} \)[/tex].
- [tex]\(\cos^{-1} x\)[/tex] varies from [tex]\( \frac{\pi}{2} \)[/tex] to 0.

The product [tex]\( \sin^{-1} x \cdot \cos^{-1} x \)[/tex] can be 0 when either [tex]\( x = 0 \)[/tex] or [tex]\( x = 1 \)[/tex]. Thus, the range contains only integer 0.

Therefore, [tex]\( (Q) \rightarrow (1) \)[/tex].

### (R) [tex]\( \frac{\sin^{-1} x}{\cos^{-1} x}, x \neq 1 \)[/tex]

For [tex]\( x \neq 1 \)[/tex]:
- As [tex]\( x \)[/tex] approaches 1, [tex]\( \sin^{-1} x \)[/tex] approaches [tex]\( \frac{\pi}{2} \)[/tex] and [tex]\( \cos^{-1} x \)[/tex] approaches 0 but remains positive.

Thus the range [tex]\( \frac{\sin^{-1} x}{\cos^{-1} x} \)[/tex] essentially can take any positive value, implying infinitely many values.

Therefore, [tex]\( (R) \rightarrow (4) \)[/tex].

### (S) [tex]\( \frac{\cos^{-1} x}{\sin^{-1} x}, x \neq 0 \)[/tex]

For [tex]\( x \neq 0 \)[/tex]:
- As [tex]\( x \)[/tex] approaches 0, [tex]\( \cos^{-1} x \)[/tex] approaches [tex]\( \frac{\pi}{2} \)[/tex] and [tex]\( \sin^{-1} x \)[/tex] approaches 0 but remains positive.

Thus the range [tex]\( \frac{\cos^{-1} x}{\sin^{-1} x} \)[/tex] can take any positive value and can be infinitely large.

Therefore, [tex]\( (S) \rightarrow (4) \)[/tex].

Combining our results with the correct option:

- [tex]\( (P) \rightarrow (3) \)[/tex]
- [tex]\( (Q) \rightarrow (1) \)[/tex]
- [tex]\( (R) \rightarrow (4) \)[/tex]
- [tex]\( (S) \rightarrow (4) \)[/tex]

Thus, the correct solution is:

C. [tex]\( (P) \rightarrow (3) ;(Q) \rightarrow (1) ;(R) \rightarrow(4) ;(S) \rightarrow (4) \)[/tex]