Assume [tex]$f(x) = -2x + 8$[/tex] and [tex]$g(x) = 3x$[/tex]. What is the value of [tex][tex]$(g \circ f)(3)$[/tex][/tex]?

A. 6
B. 23
C. -10
D. [tex]$x + 8$[/tex]



Answer :

To solve for [tex]\((g \circ f)(3)\)[/tex], we need to follow these steps:

1. Evaluate [tex]\(f(3)\)[/tex].
2. Use the result of [tex]\(f(3)\)[/tex] to find [tex]\(g(f(3))\)[/tex].

Given the equations:

[tex]\[ f(x) = -2x + 8 \][/tex]
[tex]\[ g(x) = 3x \][/tex]

Step 1: Evaluate [tex]\(f(3)\)[/tex]

Substitute [tex]\(x = 3\)[/tex] into the function [tex]\(f(x)\)[/tex]:

[tex]\[ f(3) = -2(3) + 8 \][/tex]

Perform the multiplication and addition:

[tex]\[ f(3) = -6 + 8 = 2 \][/tex]

So, [tex]\(f(3) = 2\)[/tex].

Step 2: Use the result of [tex]\(f(3)\)[/tex] to find [tex]\(g(f(3))\)[/tex]

Now, we need to evaluate [tex]\(g(2)\)[/tex], since [tex]\(f(3) = 2\)[/tex]:

[tex]\[ g(2) = 3(2) \][/tex]

Perform the multiplication:

[tex]\[ g(2) = 6 \][/tex]

Therefore, [tex]\((g \circ f)(3) = g(f(3)) = g(2) = 6\)[/tex].

The correct answer is:
A. 6