Which expressions are equivalent to [tex]\frac{1}{36}[/tex]? Check all that apply.

A. [tex]3^{-6}[/tex]
B. [tex]6^{-2}[/tex]
C. [tex]\frac{6^3}{6^5}[/tex]
D. [tex]\frac{6^2}{6^{-1}}[/tex]
E. [tex]6^{-2}[/tex]
F. [tex]6^{-9} \cdot 8^7[/tex]



Answer :

To determine which expressions are equivalent to [tex]\(\frac{1}{36}\)[/tex], we will evaluate each expression step-by-step and then compare the results.

1. Evaluate [tex]\(3^{-6}\)[/tex]:
[tex]\[ 3^{-6} = \frac{1}{3^6} \approx 0.0013717 \][/tex]
This is not equal to [tex]\(\frac{1}{36}\)[/tex].

2. Evaluate [tex]\(6^{-2}\)[/tex]:
[tex]\[ 6^{-2} = \frac{1}{6^2} = \frac{1}{36} = 0.027777777777777776 \][/tex]
This is equal to [tex]\(\frac{1}{36}\)[/tex].

3. Evaluate [tex]\(\frac{6^3}{6^5}\)[/tex]:
Using the properties of exponents, we can write it as:
[tex]\[ \frac{6^3}{6^5} = 6^{3-5} = 6^{-2} = \frac{1}{6^2} = \frac{1}{36} = 0.027777777777777776 \][/tex]
This is equal to [tex]\(\frac{1}{36}\)[/tex].

4. Evaluate [tex]\(\frac{6^2}{6^{-1}}\)[/tex]:
Using the properties of exponents, we can write it as:
[tex]\[ \frac{6^2}{6^{-1}} = 6^{2-(-1)} = 6^{2+1} = 6^3 = 216 \][/tex]
This is not equal to [tex]\(\frac{1}{36}\)[/tex].

5. Evaluate [tex]\(6^{-2}\)[/tex] (same as the 2nd expression):
[tex]\[ 6^{-2} = \frac{1}{6^2} = \frac{1}{36} = 0.027777777777777776 \][/tex]
This is equal to [tex]\(\frac{1}{36}\)[/tex].

6. Evaluate [tex]\(6^{-9} \cdot 8^7\)[/tex]:
[tex]\[ 6^{-9} \cdot 8^7 \approx 0.208098 \][/tex]
This is not equal to [tex]\(\frac{1}{36}\)[/tex].

From the evaluations, the expressions that are equivalent to [tex]\(\frac{1}{36}\)[/tex] are:
[tex]\[ \boxed{6^{-2}, \frac{6^3}{6^5}, \text{ and } 6^{-2}} \][/tex]

Other Questions