Composite Mathematics

12. For every natural number [tex]n[/tex], [tex](n+1)^2 - n^2[/tex] equals:

A. [tex]n - (n+1)[/tex]

B. [tex](n+1) - n[/tex]

C. [tex](n-1) + n[/tex]

D. [tex](n+1) + n[/tex]



Answer :

Sure, let's dive into the given problem step by step.

We are asked to determine which of the given options matches the expression [tex]\((n + 1)^2 - n^2\)[/tex] for every natural number [tex]\( n \)[/tex].

### Step-by-Step Solution

#### Step 1: Expand the Expression [tex]\((n + 1)^2 - n^2\)[/tex]
First, we need to expand and simplify the expression [tex]\((n + 1)^2 - n^2\)[/tex].

[tex]\[ (n + 1)^2 = n^2 + 2n + 1 \][/tex]

So, the expression [tex]\((n + 1)^2 - n^2\)[/tex] becomes:

[tex]\[ (n^2 + 2n + 1) - n^2 \][/tex]

#### Step 2: Simplify the Expression
Next, we combine like terms:

[tex]\[ n^2 + 2n + 1 - n^2 = 2n + 1 \][/tex]

So, the simplified expression is:

[tex]\[ 2n + 1 \][/tex]

#### Step 3: Compare with the Given Options

Let's now compare this simplified expression with the given answer choices to see which one matches:

1. [tex]\( n - (n + 1) \)[/tex]
[tex]\[ = n - n - 1 = -1 \][/tex]

2. [tex]\( (n + 1) - n \)[/tex]
[tex]\[ = n + 1 - n = 1 \][/tex]

3. [tex]\( (n - 1) + n \)[/tex]
[tex]\[ = n - 1 + n = 2n - 1 \][/tex]

4. [tex]\( (n + 1) + n \)[/tex]
[tex]\[ = n + 1 + n = 2n + 1 \][/tex]

Comparing each of these options with our simplified expression [tex]\( 2n + 1 \)[/tex], it's clear that option (d) matches:

[tex]\[ (n + 1) + n = 2n + 1 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{(n + 1) + n} \][/tex]

This corresponds to option [tex]\( \boxed{(d)} \)[/tex].