QUESTION 1

(a) Given: [tex]x(x+3)=p[/tex]

Solve for [tex]x[/tex] if:

1. [tex]p=0[/tex]

2. [tex]p=x+3[/tex]

(b) Solve for [tex]x[/tex], showing all working out:

1. [tex]3 \log _2(x-2)=9[/tex]

2. [tex]x^2-6x\ \textless \ 16[/tex]

(c) Given: [tex]x^2-6ax+5=0[/tex], where [tex]a[/tex] is a real constant.

1. Determine the roots in terms of [tex]a[/tex].

2. Show that the product of the roots is independent of [tex]a[/tex].



Answer :

Alright! Let's dive into each part of the question step by step:

### Part (a)

#### Given:
[tex]\[ x(x + 3) = p \][/tex]

1. When [tex]\( p = 0 \)[/tex]:

[tex]\[ x(x + 3) = 0 \][/tex]

For the product of two numbers to be zero, at least one of the numbers must be zero. Therefore, the solutions are:

[tex]\[ x = 0 \quad \text{or} \quad x + 3 = 0 \][/tex]
[tex]\[ x = 0 \quad \text{or} \quad x = -3 \][/tex]

Thus, the solutions are:
[tex]\[ x = 0 \][/tex]
[tex]\[ x = -3 \][/tex]

2. When [tex]\( p = x + 3 \)[/tex]:

[tex]\[ x(x + 3) = x + 3 \][/tex]

First, rearrange the equation:
[tex]\[ x^2 + 3x = x + 3 \][/tex]

Subtract [tex]\( x + 3 \)[/tex] from both sides:
[tex]\[ x^2 + 3x - x - 3 = 0 \][/tex]
[tex]\[ x^2 + 2x - 3 = 0 \][/tex]

This is a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -3 \)[/tex].

To solve it, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substitute [tex]\( a = 1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 12}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ x = \frac{-2 \pm 4}{2} \][/tex]

So the solutions are:
[tex]\[ x = \frac{2}{2} = 1 \][/tex]
[tex]\[ x = \frac{-6}{2} = -3 \][/tex]

Thus, the solutions are:
[tex]\[ x = 1 \][/tex]
[tex]\[ x = -3 \][/tex]

### Part (b)

1. Solve [tex]\( 3 \log_2(x - 2) = 9 \)[/tex]:

First, divide both sides by 3:
[tex]\[ \log_2(x - 2) = 3 \][/tex]

We convert this logarithmic equation to its exponential equivalent:
[tex]\[ x - 2 = 2^3 \][/tex]
[tex]\[ x - 2 = 8 \][/tex]

Add 2 to both sides:
[tex]\[ x = 10 \][/tex]

Thus, the solution is:
[tex]\[ x = 10 \][/tex]

2. Solve [tex]\( x^2 - 6x < 16 \)[/tex]:

First, move 16 to the left side of the inequality:
[tex]\[ x^2 - 6x - 16 < 0 \][/tex]

This is a quadratic inequality, and to solve it, we need to find the roots of the quadratic equation:
[tex]\[ x^2 - 6x - 16 = 0 \][/tex]

We use the quadratic formula again:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

For [tex]\( a = 1 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -16 \)[/tex]:
[tex]\[ x = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot (-16)}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{36 + 64}}{2} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{100}}{2} \][/tex]
[tex]\[ x = \frac{6 \pm 10}{2} \][/tex]

So the solutions for the roots are:
[tex]\[ x = \frac{16}{2} = 8 \][/tex]
[tex]\[ x = \frac{-4}{2} = -2 \][/tex]

Since the quadratic expression [tex]\( x^2 - 6x - 16 \)[/tex] opens upwards (as the coefficient of [tex]\( x^2 \)[/tex] is positive), the solution to the inequality [tex]\( x^2 - 6x - 16 < 0 \)[/tex] is the interval between the roots:

[tex]\[ -2 < x < 8 \][/tex]

Thus, the solution is:
[tex]\[ x \in (-2, 8) \][/tex]

### Part (c)

Given the quadratic equation:
[tex]\[ x^2 - 6ax + 5 = 0 \][/tex]

1. Determine the roots in terms of [tex]\( a \)[/tex]:

Using the quadratic formula:
[tex]\[ x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \][/tex]

Where [tex]\( A = 1 \)[/tex], [tex]\( B = -6a \)[/tex], and [tex]\( C = 5 \)[/tex]:
[tex]\[ x = \frac{6a \pm \sqrt{(6a)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{6a \pm \sqrt{36a^2 - 20}}{2} \][/tex]
[tex]\[ x = \frac{6a \pm \sqrt{36a^2 - 20}}{2} \][/tex]

Thus, the roots in terms of [tex]\( a \)[/tex] are:
[tex]\[ x = \frac{6a + \sqrt{36a^2 - 20}}{2} \][/tex]
[tex]\[ x = \frac{6a - \sqrt{36a^2 - 20}}{2} \][/tex]

2. Show that the product of the roots is independent of [tex]\( a \)[/tex]:

The product of the roots [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ x_1 \cdot x_2 = \frac{c}{a} \][/tex]

For [tex]\( x^2 - 6ax + 5 = 0 \)[/tex]:
[tex]\[ a = 1 \][/tex]
[tex]\[ c = 5 \][/tex]

Thus, the product of the roots is:
[tex]\[ x_1 \cdot x_2 = \frac{5}{1} = 5 \][/tex]

As we can see, the product of the roots is 5, which is independent of [tex]\( a \)[/tex].